ΙΣΤΟΡΙΑ Ερωτησεις - Απαντησεις - Επαληθευσεις Β' Γυμνασιου

  • Published on
    26-Dec-2015

  • View
    294

  • Download
    0

Embed Size (px)

DESCRIPTION

- - '

Transcript

<ul><li><p> 355</p><p> BBB </p><p>, , , . </p><p> , </p><p> ; ; </p><p> ; </p><p> . </p><p>taexeiola.gr</p></li><li><p> 356</p><p> 1 </p><p>1. 1 </p><p>1. ; </p><p> -</p><p> . </p><p>2. ; </p><p>. </p><p>1. 2 </p><p>3. ; </p><p>I. + ( ) = 0 ( ) II. + 0 = ( ) </p><p>III. + = + ( ) </p><p>IV. ( + ) + = + ( + ) ( ) </p><p>1. 4 </p><p>4. ; </p><p> = + ( ) 1. 5 </p><p>5. ; </p><p> ( + ) </p><p> + ( ) </p><p> . </p><p> ( ) . 1. 6 </p><p>6. ; </p><p> ( + ) </p><p> ( ) 7. ; </p><p>taexeiola.gr</p></li><li><p> 357</p><p> = ( ) 0 = 0 ( ) 1 = ( 1 ) () = ( ) ( ) 8. ; </p><p> 1. </p><p>9. ; ( ) </p><p> 0 = 0 1. 1. 7 </p><p>10. ; </p><p> -</p><p> : </p><p> ( + ) , </p><p> ( ) . , . </p><p> 1. 8 </p><p>11. ; </p><p> :. </p><p>12. ; </p><p> , </p><p> = 1</p><p>, ( 0 ) </p><p>1. 9 </p><p>13. &gt;1; &gt;1 - . </p><p>14. &gt;1 ; i. = + ii. : = </p><p>iii. ( ) = </p><p>iv. = () </p><p>v. </p><p> = </p><p>1. 10 </p><p>taexeiola.gr</p></li><li><p> 358</p><p>15. </p><p>a) b) </p><p>a. 0 = 1 </p><p>b. - = 1</p><p>16. ; </p><p> : </p><p>i. . </p><p>ii. . </p><p>iii. . </p><p>iv. = + v. : = </p><p>vi. ( ) = </p><p>vii. = () </p><p>viii. </p><p> = </p><p>ix. </p><p> = </p><p> 2 </p><p>2. 1 2 .2 </p><p>17. : </p><p>i. ; </p><p>ii. ; </p><p>iii. ; </p><p>iv. ( ) ; </p><p>v. ; </p><p>i. </p><p> . </p><p>ii. </p><p> . </p><p>iii. </p><p> . </p><p>iv. ( ) </p><p>. </p><p>taexeiola.gr</p></li><li><p> 359</p><p>v. -</p><p> () . </p><p>18. ; </p><p> 0 = ( 0) ( ) 0 = 0 2. 5 </p><p>19. ; </p><p> . </p><p> . </p><p>20. ; </p><p> -</p><p> . </p><p>A -</p><p> . </p><p> . </p><p> 3 </p><p> 3. 1 3 .2 </p><p>21. ; </p><p> . </p><p> -</p><p> . </p><p>22. ; </p><p> -</p><p> : = 2 = : </p><p>i. 0 = 0 </p><p>ii. 2</p><p> = ( &gt; 0) iii. = </p><p>iv. </p><p> = </p><p> ( , &gt; 0) </p><p>taexeiola.gr</p></li><li><p> 360</p><p>A</p><p>B</p><p>3. 5 </p><p>23. ( ) </p><p>( , ) ; </p><p> ( ) </p><p> . </p><p> ( , ) -</p><p> (, ) -</p><p> -</p><p>. . </p><p>24. -</p><p> ; </p><p> . </p><p>25. ; </p><p> 4 </p><p>. </p><p> 4 </p><p>4. 1 </p><p>26. ; </p><p> . </p><p>4. 2 </p><p>27. </p><p> ;( ) </p><p> -</p><p> . </p><p> . </p><p>, , , , ( = 90) </p><p>: </p><p>&lt; </p><p> &lt; </p><p> &lt; </p><p>&lt; </p><p> &lt; &lt; &lt; &lt; </p><p>taexeiola.gr</p></li><li><p> 361</p><p>A B</p><p>A</p><p>B</p><p>R R</p><p>R</p><p>R</p><p>A</p><p>B</p><p>R R</p><p>R</p><p>R</p><p>4. 3 </p><p>28. </p><p>; ( ) </p><p> . </p><p> . </p><p> = </p><p>, = </p><p>, = </p><p> = = = R &lt; &lt; </p><p> &lt; </p><p> &lt; </p><p>4. 4 </p><p>29. </p><p>; ( ) </p><p> . </p><p> . </p><p> =OEOB</p><p>, =</p><p>, = </p><p> = = = R </p><p> &gt; &gt; OEOB</p><p> &gt; </p><p> &gt; </p><p> &gt; &gt; 30. ( A = 90) </p><p>a) 2B + 2B = 1 b) B = </p><p>a) 2 + 2 = 2</p><p> + </p><p>2</p><p> = </p><p>2</p><p>2</p><p> + </p><p>2</p><p>2</p><p> = </p><p>2 2</p><p>2</p><p> + </p><p> = 1 </p><p>b) </p><p>= </p><p> = </p><p> = </p><p> = </p><p>taexeiola.gr</p></li><li><p> 362</p><p>22</p><p>1 1</p><p>30 30 </p><p>60 60 </p><p>A</p><p>B </p><p>21</p><p>1</p><p>45 </p><p>A B</p><p>45 </p><p>4. 4 </p><p>31. 30 45 60; 30 60 = = = 2 . </p><p> ( = = 1) </p><p> n n = = 30D ( = 90 ) : A2 = AB2 A2 A2 = 22 12 A2 = 3 A = 3 </p><p>30 = 12</p><p> , 30 = 32</p><p> , 30 = 13</p><p> = 3</p><p>3 </p><p>60 = 32</p><p>, 60 = 12</p><p> , 30 = 31</p><p> = 3 </p><p> 45 </p><p> ( = 90 ) , = = 1 2 = 2 + 2 </p><p> 2 = 12 + 12 2 = 2 = 2 </p><p> 45 = 12</p><p> = 2</p><p>2, </p><p> 45 = 2</p><p>1 = </p><p>22</p><p> 45 = 11</p><p> = 1 </p><p> 8 </p><p>8. 1 </p><p>32. ; </p><p> . </p><p> . </p><p>( ) </p><p>33. ; </p><p>i. </p><p>ii. . </p><p>iii. . </p><p>taexeiola.gr</p></li><li><p> 363</p><p>A</p><p>B</p><p>8.1 </p><p>34. ; </p><p> . </p><p> . </p><p>( ) </p><p>35. ; </p><p> . </p><p> . </p><p> . </p><p> . </p><p>36. </p><p> -</p><p> . </p><p> . </p><p> = ( 1 ) </p><p> n </p><p> , n = + </p><p> n = 2 = n1 2</p><p>8.3 </p><p>37. : </p><p>i. ; </p><p>ii. ; </p><p>iii. ; </p><p>iv. ; </p><p>v. ; </p><p>taexeiola.gr</p></li><li><p> 364</p><p>A B</p><p>i. </p><p> . </p><p>ii. -</p><p> . </p><p>iii. . </p><p>iv. ( - ) </p><p> () -</p><p>. </p><p>v. </p><p> . </p><p>8.4 </p><p>38. -</p><p> . </p><p> - . </p><p> ( = 90 ) : </p><p>2 = </p><p>2</p><p> 2</p><p> = </p><p>2 </p><p> = </p><p>22 = </p><p>2 </p><p> = </p><p>2</p><p>2 = </p><p> = </p><p>2 </p><p>8.5 8.6 </p><p>39. ( ) </p><p> ( ); </p><p> = 2 = </p><p> = 2 = 4</p><p>2 </p><p>8.7 </p><p>40. (rad) </p><p> (, ) (rad) . </p><p>taexeiola.gr</p></li><li><p> 365</p><p>41. ( ) (r ); </p><p>180 = </p><p> ( 1 ) </p><p>42. S ) ) </p><p> 360 2 S ) : </p><p>360 = </p><p>S2</p><p> S = </p><p>180 ( 2 ) </p><p>) S = </p><p>180 ( 1 ) </p><p>180 = </p><p> S = </p><p> S = ( 3 ) </p><p>8. 8 </p><p>43. ; </p><p> -</p><p> . </p><p>44. ( ) </p><p> 360 2 </p><p> : </p><p> = </p><p>2</p><p>360 = </p><p>2 </p><p>360 </p><p> = </p><p>180 = S</p><p>2 ( 4 ) ( S ) </p><p>45. (r ) </p><p> : </p><p> S r </p><p>S = ( i ) </p><p> S </p><p> = S2</p><p> ( ii ) ( S ) </p><p> r ( i ) ( ii ) = 2</p><p>2 </p><p>taexeiola.gr</p></li></ul>