Критерий определения статистической периодичности псевдослучайных последовательностей

  • Published on
    04-Apr-2017

  • View
    216

  • Download
    0

Embed Size (px)

Transcript

<ul><li><p> . . </p><p>82 82</p><p> 519.725, 519.688 </p><p> . . </p><p> -</p><p> . - . </p><p> The article presents the statistic periodicity of pseudo-random se-</p><p>quence. A criterion for revealing such sequences was elaborated and one of the approaches to define the statistical moment is proposed. </p><p> 1. </p><p> , -</p><p> , . , - . - , - -, - [1]. - - [2; 3; 4]. , - . </p><p> - , . - . </p><p> 2. </p><p> . K,,, 321 xxx </p><p> , T &gt; 1, K,,, 2TiTii xxx ++ </p><p> i ( 1,1 = Ti ) - : </p><p>nFFF K21 . T -</p><p> . </p><p> . . . 2007. . 10. - . . 8285. </p></li><li><p>83 83</p><p> nxxx K,, 21 (1) </p><p> , , },,2,1{ Nxi K ),,,( 21 Nhhhh K= . </p><p> , , - n K,, 21 ( )0H - ( 1H ). , nT </p></li><li><p> . . </p><p>84 84</p><p>, 1</p></li><li><p>85 85</p><p>.),(),()()1()1(</p><p>)1(2</p><p>),(),()()1()1(</p><p>)1(2),(</p><p>1 111 3</p><p>1 11 11 3</p><p>=</p><p>= =</p><p>==</p><p>=</p><p>= =</p><p>= ==</p><p>=</p><p>ks</p><p>j</p><p>j</p><p>w</p><p>wji</p><p>ski</p><p>s</p><p>k</p><p>kN</p><p>i s</p><p>s</p><p>ks</p><p>j</p><p>j</p><p>w</p><p>wt</p><p>ji</p><p>skit</p><p>T</p><p>t</p><p>s</p><p>k</p><p>kN</p><p>i s</p><p>s</p><p>nwjSpjksnpks</p><p>ss</p><p>nwjSpjkspnks</p><p>ssns</p><p> ),( ns , , -</p><p> 2)1( snss . m s &gt; m - 0),( ns . m - . </p><p>. n ).1)(1( = TNM </p><p> , (3), - , [3]. </p><p> ).221)(11()1)(1(21</p><p>2</p><p>1==</p><p>++=N</p><p>i i</p><p>T</p><p>t tNN</p><p>pnnTND (4) </p><p> 0H : </p><p> 0H , </p><p> )(</p><p>)(0</p><p>0HD</p><p>HM 3; </p><p> 1H , (1) - T. </p><p> )( 0HM )( 0HD 0H </p><p> (3) (4) .11 Npp N ===K </p><p> 1. . ., . . . .: , 2001. 2. . . .: , 1984. 3. . ., . . . .: -</p><p>, 1984. 4. . . .: , 1979. 5. . . , </p><p>.: , 1982. 6. . . . .: , </p><p>1978. </p><p> . . . ., . . . </p></li></ul>

Recommended

View more >