# МАТРИЦЫ АДАМАРА НЕЧЕТНОГО ПОРЯДКА

• Published on
04-Apr-2017

• View
218

5

Embed Size (px)

Transcript

• 3, 200646

681.3

*

. . ,. . ,. . ,. . ,. . ,. . , . . ,. . ,. . ,. . ,. . , . ,

CCCCC. MMMMM n. , . MMMMM, , .

Classical Hadamard matrices as well as a related class of CCCCCmatrices are considered. We introduceMMMMMmatrices as a possible generalization of Hadamard matrices in the case of odd order n. A computeralgorithm for finding such matrices is described. Finally, we give concrete examples of MMMMMmatricesfound by a combined analyticnumeric method, and list some of their properties.

" (, ), ( ") " . , . , , " () (") , " , .

, n, " n . " , . , . n, , C" " " 1. n (" M") . " n .

, n, , n, .

. , n n n"" A 1, nE, " [1].

1 1,

1 1A

: AA=2E . , M N "

m n , " , . . M N, " mn. , A 2" , " A A " 4"

1 1 1 1

1 1 1 1 1 1 1 1.

1 1 1 1 1 1 1 1

1 1 1 1

n > 2 , n 4. , ,

* , 04"01"00464, 04"07"90354.

• 3, 2006 47

. hadamard MATLAB, , n, n/12 n/20 . , n, , 28,36, 44, 52, 56, 60 , " .

'. " (Conference"Matrix) C n + 1 1 ", CTC (n1)E.

"

0 1,

1 0

0 1,

1 0

0 1 1 1

1 0 1 1,

1 1 0 1

1 1 1 0

0 1 1 1 1 1

1 0 1 1 1 1

1 1 0 1 1 1.

1 1 1 0 1 1

1 1 1 1 0 1

1 1 1 1 1 0

(1)

, .

" n " , n2 4, n1 . , n 2, 6, 10, 14,18 , n 22 , " 21 .

C", , , ": " ( ). " .

" 1

,1n

. . ,

1

.n

, n 6

10% .

" : n, , , 6, 10, 14, 18, 26; n, , , 4, 8, 12, 16, 20.

"" " n. , n 22 n 34, " .

n, (", " ) " n. .

(M')

, " " n, " M". , . . " " . .

1. M" " n.

2. " * " M" n:

* ( ).f n 3. L "

M" n., "

, . " ", 0 1. M" L", L n.

, " , " 4 n (1 3). , M" " , " , L ".

" , " , " ( ) ( " ) .

, M". , " k+1 k k/(k + p) , k , p > 0

• 3, 200648

. , " ". , " . ". , , , ", .

, " , " ".

:

1) ;

2) " ;

3) " ;

4) . 2 , .

MATLAB" procrust ( " [2]):

Function [alpha,Q]= procrust(n);% program finds Procrust matrix with minmax(abs(a(:)))alpha=1; gam=2; p=10;for j=1:10 A=rand(n);

if rank(A) 11 , n.

( " ) . 1. " , ,n n 1 32.n , , ", ".

" n. , n " , , .

, " M" / ,n 10%. 22" , " " 4 ( 6, 10, 14, 18, 26, 30) C", . n > 25 1,14 ( 1, C" 1 " n, " ). " , .

. 1. f n

• 3, 2006 49

M" n 3, 5, 7, 9, 11. " MATLAB MAPLE [3].

n 3

3

1 2 21

2 1 2 .3

2 2 1

M (2)

, 2/3. " , . . ". " " [4].

n 5 " :

5

2 3 6 6 6

3 6 6 6 21

.6 6 3 2 611

6 6 2 6 3

6 2 6 3 6

M (3)

, " 6/11. 25 15 6/11, . . , ". , " 60% ( M3 67%, 100%).

n 7 : M7 "

5 7 7

0,44453

N7 2 3 2

0,446.14

:

7 ,

a d c a a a a

d c a a a a a

c a d a a a a

a a a c b b b

a a a b e a d

a a a b a d e

a a a b d e a

M

7 .

a a a a b b b

a b b a a b a

a b a b b a a

a a b b a a b

b a b a b a a

b b a a a a b

b a a b a b a

N

, . M7 " 7 : 3 3 7,a b 9, 5 7,c 6 3 7,d

4 7,e 22 7 . N7 2 :

2 2,a b 2. " 2 4 2.

" M7 , MATLAB plot(sort(abs(M7(:))),*), " . 2. , 6 , 4, 3 6 , " 30 , " 61% ( , M5).

n 9

4 3 3

0,3943.12

:

9 ,

d b b b b b b b b

b a a a a a c c c

b a c a c a a c a

b a a c a c a c a

b a c a a c a a c

b a a c c a c a a

b c a a a c c a a

b c c c a a a a a

b c a a c a a a c

M

. 2. ! M7

• 3, 200650

12a 3 3 , a 0,3943, 6b 6 3 6,b 0,3493, 4c 3 1, 0,1830, 3d 2 3 3,

d 0,1547. 3 3

120,3943375.

, .

M9 . , , " 24 16 . " 40 , " 49% .

n 11 , MATLAB, :

11

b a f a a d c e a a a

d f a a e a b c a a a

a e c a d a a a f a b

a d a b a a f a e c a

a a e a b a a d a f c

a a a d a e a f c b a

f b d c a a a a a e a

e a a a f c a a b d a

a a a f c a d b a a e

a c b e a f a a a a d

c a a a a b e a d a f

M .

:a 0,34295283, b 0,33572291, c 0,30893818,d 0,2439851, e 0,15671878, f 0,045364966. 0,3429 .

M11 . 3. " 66 , 11 , 66 55 121 .

. 4.

, " , , " 100%. " M13 , "" " " . " " , , ", .

. " "" n. " M", n. , " . ", , n 11.

1. Hadamard J. Resolution dune question relative auxdeterminants// Bull. sci. math. 1893. Vol. 2. P. 240248.

2. ., . :. . .: , 1999. 549 .

3. . . : . . // " / . ., 2006 ( ).

4. . . " //. , , , 1997. . 4. 4. . 458471.

. 3. ! M11

. 4.

?