МАТРИЦЫ АДАМАРА НЕЧЕТНОГО ПОРЯДКА

  • Published on
    04-Apr-2017

  • View
    218

  • Download
    5

Embed Size (px)

Transcript

  • 3, 200646

    681.3

    *

    . . ,. . ,. . ,. . ,. . ,. . , . . ,. . ,. . ,. . ,. . , . ,

    CCCCC. MMMMM n. , . MMMMM, , .

    Classical Hadamard matrices as well as a related class of CCCCCmatrices are considered. We introduceMMMMMmatrices as a possible generalization of Hadamard matrices in the case of odd order n. A computeralgorithm for finding such matrices is described. Finally, we give concrete examples of MMMMMmatricesfound by a combined analyticnumeric method, and list some of their properties.

    " (, ), ( ") " . , . , , " () (") , " , .

    , n, " n . " , . , . n, , C" " " 1. n (" M") . " n .

    , n, , n, .

    . , n n n"" A 1, nE, " [1].

    1 1,

    1 1A

    : AA=2E . , M N "

    m n , " , . . M N, " mn. , A 2" , " A A " 4"

    1 1 1 1

    1 1 1 1 1 1 1 1.

    1 1 1 1 1 1 1 1

    1 1 1 1

    n > 2 , n 4. , ,

    * , 04"01"00464, 04"07"90354.

  • 3, 2006 47

    . hadamard MATLAB, , n, n/12 n/20 . , n, , 28,36, 44, 52, 56, 60 , " .

    '. " (Conference"Matrix) C n + 1 1 ", CTC (n1)E.

    "

    0 1,

    1 0

    0 1,

    1 0

    0 1 1 1

    1 0 1 1,

    1 1 0 1

    1 1 1 0

    0 1 1 1 1 1

    1 0 1 1 1 1

    1 1 0 1 1 1.

    1 1 1 0 1 1

    1 1 1 1 0 1

    1 1 1 1 1 0

    (1)

    , .

    " n " , n2 4, n1 . , n 2, 6, 10, 14,18 , n 22 , " 21 .

    C", , , ": " ( ). " .

    " 1

    ,1n

    . . ,

    1

    .n

    , n 6

    10% .

    " : n, , , 6, 10, 14, 18, 26; n, , , 4, 8, 12, 16, 20.

    "" " n. , n 22 n 34, " .

    n, (", " ) " n. .

    (M')

    , " " n, " M". , . . " " . .

    1. M" " n.

    2. " * " M" n:

    * ( ).f n 3. L "

    M" n., "

    , . " ", 0 1. M" L", L n.

    , " , " 4 n (1 3). , M" " , " , L ".

    " , " , " ( ) ( " ) .

    , M". , " k+1 k k/(k + p) , k , p > 0

  • 3, 200648

    . , " ". , " . ". , , , ", .

    , " , " ".

    :

    1) ;

    2) " ;

    3) " ;

    4) . 2 , .

    MATLAB" procrust ( " [2]):

    Function [alpha,Q]= procrust(n);% program finds Procrust matrix with minmax(abs(a(:)))alpha=1; gam=2; p=10;for j=1:10 A=rand(n);

    if rank(A) 11 , n.

    ( " ) . 1. " , ,n n 1 32.n , , ", ".

    " n. , n " , , .

    , " M" / ,n 10%. 22" , " " 4 ( 6, 10, 14, 18, 26, 30) C", . n > 25 1,14 ( 1, C" 1 " n, " ). " , .

    . 1. f n

  • 3, 2006 49

    M" n 3, 5, 7, 9, 11. " MATLAB MAPLE [3].

    n 3

    3

    1 2 21

    2 1 2 .3

    2 2 1

    M (2)

    , 2/3. " , . . ". " " [4].

    n 5 " :

    5

    2 3 6 6 6

    3 6 6 6 21

    .6 6 3 2 611

    6 6 2 6 3

    6 2 6 3 6

    M (3)

    , " 6/11. 25 15 6/11, . . , ". , " 60% ( M3 67%, 100%).

    n 7 : M7 "

    5 7 7

    0,44453

    N7 2 3 2

    0,446.14

    :

    7 ,

    a d c a a a a

    d c a a a a a

    c a d a a a a

    a a a c b b b

    a a a b e a d

    a a a b a d e

    a a a b d e a

    M

    7 .

    a a a a b b b

    a b b a a b a

    a b a b b a a

    a a b b a a b

    b a b a b a a

    b b a a a a b

    b a a b a b a

    N

    , . M7 " 7 : 3 3 7,a b 9, 5 7,c 6 3 7,d

    4 7,e 22 7 . N7 2 :

    2 2,a b 2. " 2 4 2.

    " M7 , MATLAB plot(sort(abs(M7(:))),*), " . 2. , 6 , 4, 3 6 , " 30 , " 61% ( , M5).

    n 9

    4 3 3

    0,3943.12

    :

    9 ,

    d b b b b b b b b

    b a a a a a c c c

    b a c a c a a c a

    b a a c a c a c a

    b a c a a c a a c

    b a a c c a c a a

    b c a a a c c a a

    b c c c a a a a a

    b c a a c a a a c

    M

    . 2. ! M7

  • 3, 200650

    12a 3 3 , a 0,3943, 6b 6 3 6,b 0,3493, 4c 3 1, 0,1830, 3d 2 3 3,

    d 0,1547. 3 3

    120,3943375.

    , .

    M9 . , , " 24 16 . " 40 , " 49% .

    n 11 , MATLAB, :

    11

    b a f a a d c e a a a

    d f a a e a b c a a a

    a e c a d a a a f a b

    a d a b a a f a e c a

    a a e a b a a d a f c

    a a a d a e a f c b a

    f b d c a a a a a e a

    e a a a f c a a b d a

    a a a f c a d b a a e

    a c b e a f a a a a d

    c a a a a b e a d a f

    M .

    :a 0,34295283, b 0,33572291, c 0,30893818,d 0,2439851, e 0,15671878, f 0,045364966. 0,3429 .

    M11 . 3. " 66 , 11 , 66 55 121 .

    . 4.

    , " , , " 100%. " M13 , "" " " . " " , , ", .

    . " "" n. " M", n. , " . ", , n 11.

    1. Hadamard J. Resolution dune question relative auxdeterminants// Bull. sci. math. 1893. Vol. 2. P. 240248.

    2. ., . :. . .: , 1999. 549 .

    3. . . : . . // " / . ., 2006 ( ).

    4. . . " //. , , , 1997. . 4. 4. . 458471.

    . 3. ! M11

    . 4.

    ?

Recommended

View more >