МЕТОДЫ ОПРЕДЕЛЕНИЯ ПАРАМЕТРОВ СИСТЕМ ОПРОБОВАНИЯ

  • Published on
    05-Apr-2017

  • View
    217

  • Download
    3

Embed Size (px)

Transcript

  • 2007 . 4 (9)

    ______________________

    .. , 2007

    76

    1

    ..

    , .

    614990, , . , 15, E-mail: poisk@psu.ru

    -

    , .

    . - , : 1)

    , (-

    , .. , , ); 2) , - , ,

    ( ); 3) , -

    ( .. , -

    ). , - .

    .

    : .. - ( ). -

    .

    , -

    . - .

    -

    . -

    [42, 21]: 1)

    ( ); 2)

    -

    .

    - , -

    , -

    -

    . - , -

    , -

    ,

    , .

    -

    -

    . -

    , , ,

    .

    -

    , ,

    , -

    . -

    , -, -

  • 77

    .

    - ,

    -

    , -

    - .

    1.

    -

    .

    -

    , - ,

    , -

    , -

    . -

    , -

    - ,

    : ,

    -

    [34].

    - , , -

    -

    .

    ,

    , -

    . -

    -

    [34].

    . ,

    .. - [14], .. [12] -

    ,

    .

    -

    . -

    , -

    , -

    - , ,

    ,

    - .. [5, 11].

    ,

    , , ,

    . ,

    (), .. , -

    .

    ,

    . ,

    -. ,

    , -

    -, ,

    -

    ,

    . -

    . , -

    -

    , -, ,

    .

    -

    -

    .

    2. ,

    , -

    .

    -

  • .. 78

    , -

    - . ,

    ,

    - .

    -, - -

    . -

    -,

    ()

    - [13]:

    = f (x, y, z) + , (1)

    x, y, z , - . -

    .. [36].

    -

    -

    . .. [40] .. [10], -

    . -

    . -, .. ,

    -

    .

    ,

    . -

    -

    ),,( zyxf i , -

    ,

    ( i ) -

    ( ). , [6]:

    ,]),,([1

    i

    n

    i

    i zyxfC (2)

    n , x,

    y, z . -

    .

    -

    , -

    . , -

    , , -

    -

    . , ,

    -

    , . , -

    -

    - -

    , -

    -

    . -

    -

    , - , -

    -

    . , -

    -

    , -

    ,

    .

    ( ) :

    n

    m

    x

    xmn

    f(x)dxxx

    1

    , (3)

    f(x) ,

    xn - xm.

    -

    ( ), - -

    :

    ni

    mi

    i

    ni

    mi

    ii

    x

    xC

    C , (4)

  • 79

    Ci = f(xi) -

    ; xi , .

    (xi = const), -

    ( ):

    n

    C

    n

    i

    i

    a

    , (5)

    n .

    ,

    , -

    -

    , .

    ,

    .

    -

    ,

    .

    . ,

    -

    , : 1) , -

    , 2) , -

    , , 3) -, .

    -

    -

    : 1) , -

    ; 2) , -

    , , ; 3) -

    , -

    .

    2.1. , -

    -

    ,

    , :

    ; .. ; -

    ; , -

    . , -

    , -

    - -

    , .., , -

    . - -

    . -

    , - .

    . -

    ,

    - -

    .

    - (V).

    -

    - (N)

    (t) -

    (m)

    2

    2)(

    m

    tV . (6)

    , -

    , .. [5] -

    2

    2

    V

    mLl , (7)

    l -, L . -

    (t),

    , 1, -

    68,3%.

    (7) [10, 36, 37],

    , .

    -

    -

    - .. [7], .. [36, 37]

    .. [29]. ,

    - -

    ,

    - , - .

  • .. 80

    [31, 32, 33, 38, 39

    .], - ,

    -

    : ,

    -, , -

    .

    - -

    , , -

    ,

    . -

    ,

    , ,

    , -

    :

    1)

    - ;

    2)

    -, -

    -

    ; 3) -

    [20].

    .

    -

    . - ,

    , -

    , -

    . - .

    . , () -

    ,

    (). , -

    .

    ,

    , , -

    . -

    - ,

    . -

    , , -

    , -

    .

    ,

    ,

    - . , , -

    , -

    -

    . -

    ,

    . -, , -

    ,

    [9]. .. .

    .. [1] -

    P

    PHP max , (8)

    max -

    ; . (

    ) ..

    1

    )1(2

    N

    , (9)

    N

    ; - ,

    .

    - -

    .

    - P -

    -

    , . -

    , ,

    . -

    .

    , - , ,

  • 81

    ,

    . .. - , -

    [30].

    .. .

    .

    , , -

    .

    , -

    -

    , -

    , .

    S2.

    , n-

    , -

    . n- - -

    , .

    ( ) -

    n

    StC , (10)

    S ; n ; t

    .

    ,

    .

    , -

    -. ,

    , .. [15], -

    10 60%,

    -

    . -

    5%

    , .

    -

    , -

    - . , -

    -

    , ,

    .

    -

    .

    , ,

    .

    , -

    . , -

    -

    -

    .

    , .

    , , ,

    , .

    -

    . -

    -

    , ..

    .

    , - ,

    .

    .

    - .

    .. [13]

    , - -

    .

    -

    . -

    , , , -

    , -

    () .

  • .. 82

    . , ,

    . -

    , ,

    ,

    . . -

    , , -

    - -

    , -. , , -

    . .

    . ,

    ,

    . ,

    , -

    , -

    . ,

    ( ), -

    -

    . , , - ,

    , -

    , . -

    .

    , -

    . , -

    .

    -

    [4].

    ,

    (), -

    :

    1, 2, ..., n p1, p2, , pn,

    ni

    i

    ip1

    1 . -

    - .

    -

    , .

    -

    , -

    [2]:

    i

    ni

    i

    i ppxH log)(1

    .

    . , -

    , -

    : , , .. .

    . - ( -

    )

    . -

    .

    , -

    -

    . -

    , . ,

    ,

    ( , -

    ), , -

    , , ,

    .

    ,

    - ,

    , -

    , - -

    -

    ,

    . -

    , -

    - , -

    [23]

    (. 1). -

  • 83

    .

    -, , ,

    -

    , .. -. ,

    , .. - , -

    ,

    , ,

    .

    . 1. () ()

    12

    , -

    , -

    -.

    , -

    , -

    , -

    . - ,

    -

    , -

    . , ,

    . -

    . - , -

    -

    ,

    - . , -

    ,

    , , - -

    , ,

    .

    2.2. , -

    ,

    ,

    -

    - . -

    , -

    -

    . -

    (- ) -

    , ,

    .

    dxxfhxfhL

    h

    hL

    x

    2

    0

    )()(1

    )(

    , (12)

    L , h -

    , f(x)

    .

  • .. 84

    , -

    , -

    .

    dxhxfxfhL

    hg x

    hL

    xx

    )()(1

    )(0

    ,

    (13) x -

    f() 0 L ( -

    ) -

    , -

    , -

    , . -

    [11].

    -

    , - D

    D

    hghK xx

    )()( (14)

    . -

    -

    [9], -

    [41]. -

    -. ,

    -

    , .. .

    ,

    -

    .

    - , -

    .

    -

    .

    , -

    - , , -

    ,

    - [10] -

    -

    .

    -, , -

    ,

    , , ,

    . -

    ,

    -

    .

    -

    . - -

    ,

    -

    - . -

    . - [20]

    .. A.. apo.

    - , -

    -

    , -, -

    .

    , . -

    -

    .

    - , -

    ,

    - -

    .

    - ,

    , -

    ,

    - .

  • 85

    2.3. , -

    ,

    -

    , .. -

    .

    .. . - .. [12]

    ,

    . -

    -

    . - ,

    .. ,

    - .

    , - .

    .. , ,

    , , -

    , -

    , ,

    ( ) -

    , . -

    -

    , ,

    . -

    , -, -

    . -

    , ,

    , , ,

    - -

    .

    .. -

    [3, 28]. - , -

    , .. -

    , , -

    -. ,

    .. -

    . -

    , , - , -

    , , -

    . -

    , -

    .

    ,

    ,

    .

    ,

    .. - (

    ).

    ,

    .. - -

    -

    -.

    .

    .. .. [17, 18, 24, 25]. -

    -

    .. [22] -

    ,

    -

    , , -

    ,

    , -

    . -

    -

    *x(h), -

    . -

    x(h). , -

    -

    f(x)

    -

    .

    1a , 1a , , ia , , na -

  • .. 86

    f(x)

    (. 2); -

    f(x)

    h =

    kx; x - (x

    -

    , - .

    ,

    -

    . - -

    1. -

    -

    , , -

    +1,

    (os0 = l), 1, -

    (cos180 = l). ,

    +1, 1,

    .

    f(x) -

    :

    h = 0 1

    )cos()cos(11

    0

    n

    aa

    n

    aaaan

    iiiii

    n

    i

    ; (15)

    h = x ;1

    )cos(

    1

    )cos(1

    1

    111

    1

    11

    n

    aa

    n

    aaaan

    iiiii

    n

    i

    (16)

    h = 2x ;2

    )cos(

    2

    )cos(2

    1

    222

    2

    12

    n

    aa

    n

    aaaan

    iiiii

    n

    i

    (17)

    h = kx .

    )cos()cos(11

    kn

    aa

    kn

    aaaakn

    kiikiiki

    kn

    i

    k

    (18)

    . 2. :

    ; *x(h);

    ; ; r*

  • 87

    )cos( kii aa

    = 1, +1 k 1.

    *

    x(h),

    k, +1 1. -

    *

    x(h) -

    . 0

    *

    x(h) - r

    *

    *

    x(h). r* ,

    (r), - -

    .

    , :

    ? , -

    -

    -

    . -

    - -

    ,

    -

    , -. -

    *

    x(h) , , . -

    .

    -

    , -

    , , -

    , .

    .. [23] -

    - (R),

    -

    :

    ,)21(

    LR

    (19)

    L , - .

    -

    ,

    -

    - .

    -

    :

    1. -

    ( -

    ).

    . 2. -

    -

    . 3.

    .

    , ,

    , - -

    ,

    . 4.

    -

    . -

    *

    x(h).

    -

    . 5.

    *x(h) -

    ,

    .

    6.

    -

    ( ).

    - : , -

    , .

    7. -

    -

    ,

    ,

  • .. 88

    -

    .

    , -

    . , -

    (

    - ), -

    -

    , -

    *

    x(h), , -

    . -

    *x(h),

    , -

    -

    -

    . -

    , - [26], -

    -

    , - .

    - -

    , [8], -

    - [6], -

    [27]

    , .

    , ,

    -

    - -

    [8] .

    1. .. -

    / .. . .: -

    , 1963. 212 . 2. .C. / ..

    . .: , 1964. 576 .

    3. ..

    / .. , .. // .

    . . 1968. 6. . 69

    77.

    4. .. -

    / .. , .. , .. -

    // . . ,

    1974. . 10. 156 .

    5. .. - / .. // . . 1957. . 61. . 130 143.

    6. .. -

    (

    -

    ) / .. , .. //

    , -

    : -

    . . . . , 1984. . 128

    137.

    7. .. - / .. // .

    1936. 19.

    8. -

    / . .. , ..

    . . -. , 1989. 181 .

    9. .. - -

    / .. //

    . . .: , 1968. . 92 99.

    10. .. /.. -

    . .: , 1974. 272 .

    11. .. - / .. . .:

    , 1977. 327 .

    12. .. - -

    / .. -

    . .: , 1948. 130 . 13. ..

    / .. // . -

    . 1956. . 53, . 118 - 151.

    14. .. - -

    / .. //

    . 1947. 2. C. 9 - 18.

    15. .. - / ..

    . ., , 1960. . 1.

    332 .; 1961. . 2. 390 . 16. ..

    -

    /

    .. // -

    . , 1976. . 46 -

    48.

  • 89

    17. .. - - -

    , -

    : . . . .-

    . /.. . ., 1978. 16 .

    18. .. - / .. - // -

    -

    /. . -. , 1981. .

    1. . 14 - 40 (. , 3758-81

    .).

    19. A.. . -

    / .. . .: , 1968.

    . 387 - 407.

    20. . - / . . .: , 1968. 408

    . 21. .. -

    / .. //

    . . . 1958.

    10. . 95 - 102.

    22. .. / .. -

    // -

    . 1971.

    9. . 131 - 133. . . . -.

    233.

    23. .. - / .. .

    .: , 1990. 126 .

    24. ..

    / .. , .. -

    // . . . . -

    .

    .: 1972. . 136 - 137.

    25. .. /

    .. , .. //

    : . . , 1974. .

    203 - 204.

    26. ..

    / .. , .. //

    -

    / . -. , 1981. . 1. .

    84 - 104 (. , 3758-81

    .). 27. ..

    -

    / .. , .. //

    . . -. . 14 40.

    28. .. -

    / ..

    // .

    -

    . .: , 1961. . 83 - 91.

    29. .. - -

    / .. //

    . .: -, 1947. 280 .

    30. .O.. - / ..

    , .. , .. -

    . .: , 1968. 460 .

    31. .. - ,

    -

    / ..

    // . . . . -. 1964.

    . 12, . 2. . 87 - 92.

    32. .. - / .. -

    // . . 1961. . 6. . 9 -

    16.

    33. ..

    / .. . .: , 1964.

    102 .

    34. .. / .. // . .

    1957. 58. . 150 - 162.

    35. .K. / .. // -

    / . . . . -. .,

    1969. . 18 - 63.

    36. .. -

    / ..

    // . 1938. 1. . 37 - 43.

    37. .. - -

    / .. // .

    . 1939. . 115. . 54.

    38. .. - -

    -

    / .. // . . -

    . . -. 1972. . 74, . 93 -

    99.

    39. .. - -

    / .. // . . . -

    . . , 1959

    (1960). . 5 (26). . 203 - 212.

    40. ..

    / .. . . -. -

    , 1968. 152 .

  • .. 90

    41. .. - -

    / ..

    // -

    . , 1971. . 167.

    42. .. - / ..

    . .: , 1954. 296 .

    Methods of determine of parameters of systems take

    samples

    G.V.Lebedev

    Perm state university, 614990, Perm, Bukirev street, 15

    Now methods of determine of parameters of systems take samples based on practical experience of investigation and operation of deposits are applied basically. Quantitative methods have the li-

    mited application. Being based on theories of geochemical fields, quantitative methods can be

    subdivided into three groups: 1) the methods based on the account of amplitude characteristics of geological fields (analytical method, method of V.V. Bogatsky, a method which is based the

    theory of the information); 2) the methods based on the account of parameters, describing simulta-

    neously both amplitude and frequency (the method of variagrams and the method of standardize

    correlation function); 3) the methods based on the account of frequency characteristics (P.L. Kal-listov method, method of geometrical autocorrelation). Principal defect of the first group of me-

    thods consists that they do not consider spatial variability of geochemical fields. Application of

    second group of methods is limited by a condition of stationary initial realizations. The certain de-fect also is inherent in the third group. Trustworthiness of the method of P.L. Kallistov depends on

    a reference mark (position of the first sample). The method of geometrical autocorrelation is freer

    from noted defects. From the theory of geochemical fields follows that the system of take a sam-ples must calculation on the basis of frequency characteristics of fields. The amplitude characteris-

    tic has no direct attitude to a choice of an optimum step between samples.

    .-. ..

Recommended

View more >