НОВОЕ СЕМЕЙСТВО КВАЗИСЛУЧАЙНЫХ ПОСЛЕДОВАТЕЛЬНОСТЕЙ

  • Published on
    05-Apr-2017

  • View
    217

  • Download
    5

Embed Size (px)

Transcript

  • 1. .., .., ..

    . .: , 2003. 615 .

    2. .. // . 2011. . 8. 2. . 175179.

    3. .. . .: , 2005. 384 .

    4. .. . .: , 1998. 137 .

    5. .., .. . : , 2010. 360 .

    6. .. . : , 1984. 420 .

    7. .., .., .. QR . // . 2004. . 1. . 122129.

    09.06.2011 .

    . 2012. . 320. 2

    24

    P p ( ) . ( ) ( ), , , , . [13]. , , [4], , .

    n, n .

    , , , .

    Xn d Id=[0,1)...[0,1) Id, B=[a1,b1)[a2,b2)...[ad,bd), 0ai, bi1

    .

    , , n , , . , ( n) .

    , , n.

    , , p [5]. , .. [68], 0. , , . . , Xn .

    q= n, . q

    s 1

    0, ,s s

    t

    q q

    +

    1

    ( )

    d

    i i

    i

    b a

    =

    1

    | |

    lim ( ),

    d

    n

    i i

    n

    i

    X B

    b a

    n=

    =

    519.6

    .. , ..

    E!mail: vir@tpu.ru

    , ,, . , . !

    !.

    : , , p! !.Key words:Quasi!random sequences, binary, p!ary and an AS!sequence.

  • 0tq s1. I=[0,1) qs . , q s B1...Bd d Id=[0,1)...[0,1), Bi q s1, s2,..., sq , s1+...+sq=s.

    , q q .

    kq s+{0,q s1}, k=0,1,2,... q s. .

    1. Xn Id , q s q .

    1.1. k

    I d .

    2. I d. ,

    . . x I=[0,1)

    q

    0xnq1. , q

    , . . 0tqs1,

    q :

    n q n=n0+n1q+n2q2+...+nsqs, 0niq1 ns0. q r(n). n~=ns+ns1q+...+n0q s n. n q

    ,

    h I=[0,1). , h(n) .

    :

    2. q s (h(n))|n=0

    q s.

    . t . , {(t+a)mod q s: a{0, q s1}}={0, q s1}. , {0, q s1}, sq t+a . .

    .

    n=n0+n1q+...+nsq s, q , n=.

    3. A=(aij) i, j{0,1,...,}, 0aijq1,

    Fq, , As=(aij), i,j{0,1,...,s} , A(n) ,

    ( Fq).1. h(A(n))

    .2. h(A(n)) 2.

    . , h(A(n))

    , : s

    m=0,1,..., s

    . . A s

    Fqs . , n {(t+a):a{0,qs1}}, s q (t+n) . .

    .

    4. A=(Ckmkm), k,m{0,1,...,}, Ckm

    , Ckm=0 km, dq.

    (h(n),h(A(n)),h(A2(n)),...,h(Ad1(n))) d .

    . i Ckmi km, i=0 , ikm=km. (h(n),h(A(n)),h(A2(n)),...,h(Ad1(n))) d , s 1,2,...,d, , 01s 1+2+...+d=s s, :

    1 0, 2 1, . ., d d.

    , . ., . 0 n= , Asn

    =0.

    0

    ,

    s

    mk k m

    k

    ta n

    =

    =

    ( )

    0

    ..., ... ,

    r n

    mk k

    k

    A n a n

    =

    =< >

    ( ) 1 1

    0

    ( ) .

    s

    i

    r n i

    i

    n nh n

    q q+ +

    =

    = =

    1

    0 1

    1

    1 1

    0 1

    1

    1 0

    .

    s

    i

    i i

    i i s

    s

    i s

    i s i

    i i s

    qxx

    q q

    x xx

    q q q

    +

    = = +

    + +

    = = +

    = +

    += + +

    ,s

    t

    q

    1

    0

    ,i

    i

    i

    xx

    q

    +

    =

    =

    .

    25

  • .

    n(x)=n0+n1x+...+ns1xs1 Fq. s , i{0, d1} [9] 0,1,...,i+1,. . n(x) i+1. , s1 s . .

    . , , 2.

    .

    , ( ) . , [1].

    , (), , , [58]. , .

    . 2012. . 320. 2

    26

    1. ..

    // . 2009. . 14. 6. . 119127.

    2. .., .. // . 2005. . 45. 3. . 411415.

    3. De Doncker E., Guan Y. Error bounds for the integration of singular functions using equidistributed sequences // Journal of Complexity. 2003. V. 19. 3. P. 259271.

    4. .. , // . 2010. . 316. 5. . 4143.

    5. ., . . .: , 1985. 408 .

    6. .. . .: , 1969. 288 .

    7. .. // . 1973. . 210. 2. . 278281.

    8. .. , . .: , 1985. 32 .

    9. ., . . 2 . .: ,1988. 820 .

    05.10.2011 .

Recommended

View more >