Проекционные операторы для планетарных волн Россби и Пуанкаре в атмосфере

  • Published on
    06-Apr-2017

  • View
    216

  • Download
    4

Embed Size (px)

Transcript

  • . . , . .

    32 32

    HcW, Hc1. , , - . , - , , HcW.

    1. . ., . . // . 88. 1412 (1985). 2. . . // . 97. 1346 (1990). 3. . ., . . // -

    / . ., 1998. 4. . . // . 173. 27 (2003). 5. . ., . ., . . // . 112. 1351 (1997). 6. Filippov A. E., Radievsky A. V., Zeltser A. S. // Phys. Rev. B 54. 3504 (1996).

    . . . . . . . . .-. , ., . . ,

    avradievsky@mail.ru

    550.338

    . . , . . , . .

    . , . , - , , - .

    The application of a method of projective operators to a problem of

    identification of planetary Rossby and Poincare waves in an atmos-phere is considered in the paper. Procedure of construction of projec-tive operators for short and long Rossby waves, and also for Poincare waves propagating in opposite directions is offered. Test calculations were shown, that by the differential operators constructed on offered procedure, solve a problem of identification of planetary waves from observations only one station.

    . . . 2008. . 4. - . . 3237.

    mailto:avradievsky@mail.ru

  • 33 33

    1.

    - . , - ( ) . , - - . , . , - - . - ( ).

    - [1]. - -. - -, , [2]. ( , ). , :

    ==n n

    ii P1 1

    . (1)

    iP i , - i- . - , , , -, i .

    2.

    - [3]:

    .

    ,,

    00

    02

    2

    =++

    =++

    =+

    VUVcUfVcVfU

    xyt

    yt

    xt

    (2)

    (2) x, y ( ) - ( ) , t , U V - (u) (v) : UuHVHv == 00 , ;

  • . . , . . , . .

    34 34

    , H0 ,

    Hgc =2 , ),cos(2),1(0 == fyHH )sin(/1 = R , R - , , , -. (2) - L . (2) :

    =n

    nnYV ;

    nnyn

    nn YYU += ; ),2/exp()sin( yylY nn = Lnln /= ; (3)

    nnyn

    nn YY += .

    (3) - x, kdxki = ~)exp( , :

    ).//()4/(

    ;0~)1(~;0~~~

    ;0~~~

    22222

    2

    2

    cflQ

    QcQf

    ckif

    ki

    t

    t

    t

    +=

    =++

    =+

    =+

    (4)

    : )//( 22221 cflkkf ++= ; 1/

    221 f .

    (5)

    1 , 2,3 -; k l - .

    =3

    1i (-

    ) :

    ;~~

    )(~

    ;~~~

    222

    2

    iiii

    i

    iiii

    i

    bfki

    ck

    afkckf

    +

    =

    ++

    =

    iiiba ~1

    = . (6)

    [2] :

    =

    )()()()()()(

    iiiiii

    iiiiii

    iii

    i

    bbbaaaP . (7)

    Pi , -:

  • 35 35

    23321 abab = ; 31132 abab = ; 12213 abab = ;

    = ii ; =i

    i ;

    =)( 23

    1bb

    ;

    =)( 31

    2bb

    ;

    =)( 12

    3bb

    (8)

    =)( 32

    1aa

    ;

    =)( 13

    2aa

    ;

    =)( 21

    3aa

    .

    [ ] ii PP =2 IPi

    i = , (9)

    I .

    3.

    - , , - . - . (68) -, ( ). - )(kk = -. (5) k ( maxkk < ) ( maxkk > ) , .

    22max )/( lcfk += , maxmax 2/ kf= .

    , 2/,/ RLLl == , 4 , -

    10 . . , [4], . , .

    )(k 3max

    )( (11,12):

    max

    maxmaxmax

    22

    =kkk ; (11)

    3max

    3

    maxmax

    max 81

    21

    kkk += . (12)

    )(),( 11 ba (7) :

    ))/()1(

    ()(122

    fc

    c

    += ; ))1(()(12

    ff

    icb

    +

    =

    ; (13)

    (13) fc

    = ; f

    q max= ; 1=i .

  • . . , . . , . .

    36 36

    - /f

  • 37 37

    3. . ., 1984. 4. ltadill D. Planetary wave type oscillations in the ionospheric F-region //Adv.

    Space. Res. 2000. V. 26. 8. P. 12761287.

    . . - .-. , ., . . . . . . . . , ., . . . . . - .-. , ., . . .

    530.145

    . .

    - - -. - -, . - .

    Development of Cauchy idea on analytical continuation of Euler

    gamma function to the case of functional series is considered. Applica-tion to the problem of vacuum energy calculation for massive scalar field in presence of other static field is considered. Fundamental possi-bility of vacuum energy correction due to vacuum spectrum alteration is discussed.

    . - . - - , , . . . [1; 2] - [3]. - - - [4, . 25], . , , -

    0

    1dtte zt t=0 (

    . . . 2008. . 4. - . . 3742.

Recommended

View more >