ШЕЙКООБРАЗОВАНИЕ ТОНКОСТЕННОЙ ТРУБНОЙ ЗАГОТОВКИ ИЗ АНИЗОТРОПНОГО МАТЕРИАЛА ПРИ РОТАЦИОННОЙ ВЫТЯЖКЕ КОНИЧЕСКИМИ РОЛИКАМИ ПО ПРЯМОМУ СПОСОБУ

  • Published on
    05-Apr-2017

  • View
    219

  • Download
    1

Embed Size (px)

Transcript

<ul><li><p> 13 </p><p> 539.374; 621.983 </p><p> .. , .. , .. </p><p> - . </p><p> : , , , -, , , , . </p><p> - - - - [1-5]. S - S (. 1). </p><p> - () - S . , </p><p> - - M - P . , - ( r , , z). </p><p> . 1. </p><p> . -</p><p> - [6, 7]: </p><p>1222)()()( 222222 =+++++ zrzrzzrr NMLHGF , (1) NMLHGF ,,,,, - , -</p></li><li><p> . . 2013. . 1 </p><p> 14 </p><p> , zyx ,, rz ,, . </p><p> [6, 7]: </p><p>=</p><p>+</p><p>=</p><p>=</p><p>+</p><p>=</p><p>=</p><p>+</p><p>=</p><p>;1</p><p>2;111</p><p>2</p><p>;1</p><p>2;111</p><p>2</p><p>;1</p><p>2;111</p><p>2</p><p>2222</p><p>2222</p><p>2222</p><p>RLF</p><p>SMG</p><p>TNH</p><p>szsrs</p><p>sszsr</p><p>srssz</p><p> szssr ,, - - , - zr ,, ; TSR ,, - - . </p><p> [6, 7] : </p><p>[ ( ) ( )]; 2 ;</p><p>[ ( ) ( )]; 2 ;</p><p>[ ( ) ( )]; 2 ,</p><p>z z z r z z</p><p>r z r r</p><p>r r z r rz rz</p><p>d d H G d d N</p><p>d d F H d d L</p><p>d d G F d d M</p><p>= + = = + = = + = </p><p> (2) </p><p> d - . (2) </p><p>=</p><p>++=</p><p>=</p><p>++=</p><p>=</p><p>++=</p><p>.2</p><p>;)(</p><p>;2</p><p>;)(</p><p>;2</p><p>;)(</p><p>Md</p><p>d</p><p>HFGHGFd</p><p>HdGd</p><p>Ld</p><p>d</p><p>HFGHGFd</p><p>FdHd</p><p>Nd</p><p>d</p><p>HFGHGHd</p><p>GdFd</p><p>rzrz</p><p>rr</p><p>rr</p><p>zrzr</p><p>zz</p><p>zz</p><p> (3) </p><p> , </p><p>0;0;0 === rzrr dd . </p></li><li><p> 15 </p><p>=</p><p>++=</p><p>++=</p><p>,2</p><p>;)(</p><p>;)(</p><p>Nd</p><p>d</p><p>HFGHGFd</p><p>GdHd</p><p>HFGHGFd</p><p>HdFd</p><p>zz</p><p>r</p><p>rzz</p><p> (4) </p><p>iidd = . (5) </p><p> id , [6, 7], </p><p>+</p><p>+++</p><p>++++= </p><p>22)(</p><p>3</p><p>2</p><p>HFGHFG</p><p>FdHdG</p><p>HFGHFG</p><p>HdGdFHGFd zrri </p><p>1/22 2 2 2</p><p>,2 2 2</p><p>z r rz zFd Gd d d dHFG GH HF L M N</p><p> + + + + + + </p><p>, 0=rd ; 0=rzd , = ddd zr , : </p><p> +++</p><p>+++= 2)(</p><p>32</p><p>dHFGHFG</p><p>HGHGFd i </p><p>.2</p><p>22/12</p><p>2</p><p>+++</p><p>+++</p><p>++ Nd</p><p>ddHFGHFG</p><p>Hd</p><p>HFGHFG</p><p>FH zzz (6) </p><p> i - </p><p>+++++</p><p>= 222 )()()([</p><p>)(2</p><p>3zzrri HGFHGF</p><p>.]222 2/1222 +++ zrzr NML (7) (1), </p><p>)(2</p><p>3</p><p>HGFi ++= . (8) </p><p> d , (8) (5), : </p><p>i</p><p>iii</p><p>d</p><p>HGFdd</p><p>++==</p><p>)(2</p><p>3. (9) </p><p> (1) </p></li><li><p> . . 2013. . 1 </p><p> 16 </p><p>12)( 2222 =+++ zzz NHGF , (10) </p><p>;)()(</p><p>32</p><p>rzi</p><p>iz HdFddHFGHFG</p><p>HGF </p><p>++</p><p>++= </p><p>);()(</p><p>32</p><p>++++= GdHd</p><p>dHFGHFG</p><p>HGFr</p><p>i</p><p>i (11) </p><p> ++= z</p><p>i</p><p>iz ddN</p><p>HGF )(31</p><p>. </p><p> . [7, 8]: </p><p>0=dP (12) </p><p>0=dM , (13) </p><p>,,2</p><p>,2 00 rRt</p><p>rRrrtP d</p><p>dz =</p><p>+== (14) </p><p> r - ; t - ; dRr ,0 - - ; </p><p>= ztr22 . (15) </p><p> (12) , </p><p>0=</p><p> ++t</p><p>dt</p><p>r</p><p>drd zz . (16) </p><p> , </p><p>zdt</p><p>dt</p><p>r</p><p>dr =+ . </p><p> z . </p><p> 2F </p><p>)()(</p><p>3</p><p>2rz</p><p>i</p><p>iz HdFddHFGHFG</p><p>HGF </p><p>++</p><p>++= </p><p> r</p><p>zr</p><p>zd</p><p>d</p><p>G</p><p>HR</p><p>d</p><p>d</p><p>F</p><p>HR</p><p>==</p><p>== , , </p><p>.1</p><p>13</p><p>22 z</p><p>zi</p><p>i</p><p>z</p><p>zzz dR</p><p>R</p><p>dRRRR</p><p>RRRR </p><p>++</p><p>++</p><p>++= </p><p> (17) </p><p> , </p><p>;0=++ rz ddd =</p><p>z</p><p>rd</p><p>d.</p><p>1</p><p>1</p><p>zR+ </p><p>, = zdd -</p></li><li><p> 17 </p><p> zd </p><p>constcd</p><p>d</p><p>z=</p><p>1 . (18) </p><p> , , </p><p>constd</p><p>d</p><p>i</p><p>z =</p><p>. (19) </p><p> , . </p><p> (6) . - (6) F -</p><p> R zR , z</p><p>zz d</p><p>d</p><p>F</p><p>NR</p><p>== , </p><p>++= RR</p><p>Rd</p><p>zi 13</p><p>2 </p><p>+</p><p>++</p><p>+++</p><p>+</p><p>z</p><p>zzz</p><p>zzz</p><p>zR</p><p>RRRR</p><p>R</p><p>R</p><p>R</p><p>RR</p><p>RRR</p><p>R</p><p>RR</p><p>R</p><p>R</p><p>2</p><p>1</p><p>2</p><p>22)1(2</p><p>. (20) </p><p> , - , </p><p>constd</p><p>d</p><p>i</p><p>z </p><p>, </p><p> (17) , </p><p>zi</p><p>i</p><p>zz</p><p>zzz dd</p><p>d</p><p>R</p><p>R</p><p>RRRR</p><p>RRRRd </p><p>++</p><p>++++= </p><p>1</p><p>13</p><p>22</p><p> (21) </p><p>zi</p><p>izz dd</p><p>dAd </p><p>= . (22) </p><p> (16), (22), </p></li><li><p> . . 2013. . 1 </p><p> 18 </p><p>i</p><p>izz d</p><p>dA</p><p>= . (23) </p><p>, </p><p>++</p><p>++= z</p><p>i</p><p>i</p><p>z</p><p>zz</p><p>i</p><p>iz ddR</p><p>RR</p><p>R</p><p>ddN</p><p>HGF1</p><p>3</p><p>1</p><p>3</p><p>1, (24) </p><p> (17), </p><p>= </p><p>z</p><p>z .</p><p>11)(</p><p>)(1</p><p>2</p><p>11</p><p>2</p><p>Bcd</p><p>dB</p><p>d</p><p>d</p><p>R</p><p>RRRRRR</p><p>RRRRRR</p><p>R</p><p>zz</p><p>zzzz</p><p>zz =</p><p>=</p><p>++++</p><p>++</p><p>++</p><p> (25) </p><p> i , - 0=dP , </p><p>.2</p><p>12</p><p>3 21</p><p>2cBRRR</p><p>R</p><p>RR</p><p>Rd</p><p>dA z</p><p>z</p><p>z</p><p>i</p><p>izi </p><p>++</p><p>++</p><p>= (26) </p><p> , </p><p>)2(22 22 dtrrdrttrddM zz ++= , (13) : </p><p>02 =</p><p> ++ tdt</p><p>r</p><p>drd zz . (27) </p><p> (23) </p><p> ++= z</p><p>i</p><p>iz dd</p><p>d</p><p>N</p><p>HGFd</p><p>)(</p><p>3</p><p>1. (28) </p><p> (28), = drdr</p><p>; rdt</p><p>dt = , </p><p>, , </p><p>zz</p><p>r dRr</p><p>drd </p><p>+==</p><p>1</p><p>1, </p><p> (27) (23) </p><p>zz</p><p>z dR</p><p>R</p><p>t</p><p>dt</p><p>r</p><p>dr </p><p>++=+</p><p>112 , </p><p>111</p><p>1</p><p>1</p><p>1</p><p>3</p><p>1cB</p><p>A</p><p>RR</p><p>R</p><p>R</p><p>Rc</p><p>z</p><p>z</p><p>z</p><p>z</p><p>z</p><p>z =++</p><p>++=</p><p> . (29) </p></li><li><p> 19 </p><p> , i , - 0=dM , </p><p>2/121</p><p>212</p><p>12</p><p>3</p><p>++</p><p>++</p><p>= </p><p>cBRRR</p><p>R</p><p>d</p><p>dA</p><p>RR</p><p>Rz</p><p>zi</p><p>iz</p><p>z</p><p>i . (30) </p><p> - - - . </p><p> - 2012-2014 . </p><p> 1. .. . </p><p>.: . 1971. 239 . 2. .. </p><p>. .: . 1983. 190 . 3. : : 4 . . 4. / </p><p> . . .. . 2- ., . . .: -, 2010. 732 . </p><p>4. .. - . : - , , 2002. 148 . </p><p>5. .., .., .. . .: , 2009. 265 . </p><p>6. .., .., .. - . : , 1997. 331 . </p><p>7. .., .., .. / . .. . .: -, 2012. 400 . </p><p>8. : / .. [ .]; . .. , .. . .: -, 2009. 442 . </p><p> , - . , ., mpf-tula@rambler.ru, </p><p>, , , </p></li><li><p> . . 2013. . 1 </p><p> 20 </p><p> , mpf-tula@rambler.ru, , , - </p><p> , . . , ., mpf-tula@rambler.ru, , </p><p>, </p><p>THE NECKING OF THIN-WALLED PIPED DETAIL FROM ANISOTROPIC MATERIAL IN THE PROCESS OF ROTARY DRAWING BY CONE-SHAPED ROLLERS </p><p>BY THE DIRECT PROCESS </p><p>V.I. Tregubov, E.V. Osipova, K.S. Remnev The thin-walled piped detail from anisotropic material necking criterion for rotary </p><p>drawing by cone-shaped rollers by the direct process on the basis of extra load positiveness condition is provided. </p><p>Key words: rotary drawing, anisotropic material, pipe, roller, mandrel, power, feed step, deformation level. </p><p> Tregubov Viktor Ivanovich, doctor of technical science, professor, </p><p>mpf-tula@rambler.ru, Russia, Tula, Tula State University, Osipova Elena Vitalievna, ingineer mpf-tula@rambler.ru, Russia, Tula, Tula State </p><p>University, Remnev Kirill Sergeevich, candidate of technical sciences, docent, </p><p>mpf-tula@rambler.ru, Russia, Tula, Tula State University </p><p> 621.771 </p><p>.. , .. , .. </p><p> -2 - , . </p><p> : , , - , </p><p> -</p><p>, , , , , -</p></li></ul>

Recommended

View more >