СИММЕТРИИ И ТОЧНЫЕ РЕШЕНИЯ УРАВНЕНИЙ ДИНАМИЧЕСКОЙ КОНВЕКЦИИ МОРЯ

  • Published on
    06-Apr-2017

  • View
    216

  • Download
    4

Embed Size (px)

Transcript

<ul><li><p> !"#!"$%#&amp;('*)$+$,!&amp;-.0/1234.65798:2$;?&gt;.</p><p>@ACBEDFGH IJJLKMDN$OHPD</p><p>Q3RTSUSUV9WYXZRTR R W\[]T^`_aVbXZVdc Vd^TR`e fgX(hgi3^TVd^TRTjk RT^ThlSURT]TVmQ3no[j no[^`i3VdnTpTRTR Sq[XCe</p><p>rtsvus6wyx{z x}|}~*osvs*(Cx}|}</p><p>$s&amp;$$&amp;?$$C$&amp;$&amp;L&amp;$$$$&amp;4$</p></li><li><p> y02 </p></li><li><p>6 : y = y + (t), v = v + (t),z = z + ( (t)x + (t)y) + 1</p><p>2(t)(t),</p><p>w = w + ( (t)u+ (t)v + (t)x + (t)y) + 12((t) (t));</p><p>7 : z = z + (t), w = w + (t).@{</p></li><li><p>{X1, X2, X3}0 {aX1 +X2, bX2 +X3}, {X1, cX2 +X3}, {X1, X2} 0 {aX1 + bX2 +X3}, {aX1 +X2}, {X1} d2O. ( &amp;}H+*06 ( &amp; 2 L4 0(L2O 4 4 </p></li><li><p>{14, C4 + 25 + 26 + 27 + 28},</p><p>{X1 + C15 + C26 + C37 + C48, X2 + 14},</p><p>{X1 + C1 cos(</p><p>12(c 1)t</p><p>)</p><p>+ C2 sin(</p><p>c12t)</p><p>5++C2 cos</p><p>(</p><p>c12t)</p><p> C1 sin(</p><p>c12t)</p><p>6 + C37 + C4et/28, cX2 +X3 + 14},</p><p>{dX1 +X2 + C1 cos(</p><p>12(c 1)t</p><p>)</p><p>+ C2 sin(</p><p>c12t)</p><p>5++C2 cos</p><p>(</p><p>c12t)</p><p> C1 sin(</p><p>c12t)</p><p>6 + C37 + C4et/28, fX2 +X3 + 14},</p><p>{aX1 + bX2 + cX3 + C1 cos(</p><p>t2</p><p>)</p><p> C2 sin(</p><p>t2</p><p>)</p><p>5 + C2 cos(</p><p>t2</p><p>)</p><p>+ C1 sin(</p><p>t2</p><p>)</p><p>6 + C37 + C48, 14},</p><p>{X1, X2},</p><p>{X1, cX2 +X3},</p><p>{dX1 +X2, fX2 +X3},</p><p>{bX2 +X3 + 17, 27},</p><p>{15 + 17 + 18, 25 + C + 26 + 27 + 28},</p><p>{bX2 + 17 + 18, 27 + 28},</p><p>{X3 + 15 + 7, 25 + C + 26 + 27}.</p><p>(yyygyy /y") /+) )y")3y*)+!AY49&amp;</p></li><li><p>!}</p></li><li><p> ( FI10</p></li><li><p>`&amp;42a(t) =</p><p>q(t)</p><p>2, C() =</p><p>()</p><p>2.</p><p>AY4.2&amp;.*}$2(9(0</p></li><li><p> ("!} ) #&amp;%y") /+) )y") *</p></li><li><p>- 2 - 1 1</p><p>x</p><p>- 2</p><p>- 1</p><p>1</p><p>y</p><p> y0 *42m0 ( L(2</p><p> ( t0</p></li><li><p> (#3")y")AY4 0 ( 2}20L420(400$} w v=k</p></li></ul>