УПРАВЛЕНИЕ КАЧЕСТВОМ ПРОДУКЦИИ ПИЩЕВЫХ ПРОИЗВОДСТВ НА ОСНОВЕ ДИСКРЕТНО-АНАЛИТИЧЕСКИХ МАТЕМАТИЧЕСКИХ МОДЕЛЕЙ

  • Published on
    06-Apr-2017

  • View
    213

  • Download
    1

Embed Size (px)

Transcript

  • . . 2012. . 1

    456

    .2

    )(

    2

    )(ln

    2

    2

    2

    2

    y

    y

    x

    x

    x

    y my

    a

    amby

    a

    =

    , xy a= , .0)()(22 = yx myamby

    0=+ yx myamby ,bamm xy += .

    , , X Y ,

    baXY += , a b (13) (14) -, Y , X .

    E.A. Yadykin MATHEMATICAL AND STATISTICAL PROJECTIONS OF PRODUCTS QUALITY

    AFTER MANUFACTURING OPERATION Conditions at which technological operation can be presented as linear not casual

    function of two random variables are strictly proved. Key words: technological operation, not casual function, linearity, random

    variables.

    13.01.12

    664-047.58 .. , - . , ., . , (4872) 35-54-66, jadykin@tsu.tula.ru (, , ) -

    -

    . , .

    : , , -

    .

    -.

  • ,

    457

    - : -, - , , ..

    - () , .. . - , , , , , - . , , , , ..

    , - . , - - [1, 2].

    ( ), , -, , - . - .

    , - . , - , .

    - , - .

    :

    ) , - ();

  • . . 2012. . 1

    458

    ) , ;

    ) , - ();

    ) ;

    ) ;

    ) - .

    , , -, , , , , , - . , - . , - . - .

    , - - [3].

    1. . - , (). , - .

    2. , .

    3. [4] (). - () . () .

    4. . -, , .

  • ,

    459

    5. - [5].

    6. . - , .

    , . - -, -, , .. - , -, , , .

    - , - [6]. - .

    . , , .

    -, . , -, - .

    0,3 % 0,02 %. : , . , , .

    , - , .

    ,

    , %

    .

    1 , .

    0,45 0,015 70 0,2 0,01 55 0,3 0,025 85

    321 ,, xxx -. :

    .0,0,0 321 xxx

  • . . 2012. . 1

    460

    , :

    .855570)( 321 xxxxf ++= :

    ++

    ++

    .02,0025,001,00150

    303020450

    321

    321

    xxx,

    ,,x,x,x,

    : .1321 =++ xxx

    Microsoft Excel. 1. (. 1). ),,( 321 xxxx = B3:D3, 4.

    .1.

    321 ,, xxx

    . 2. , -

    15 % , 23 % 62 % . - - , 75 77 -.

    . 2.

  • ,

    461

    - ().

    , - u () [1, 2], , , , -. , .. . , u , - ( [1]).

    - , u .

    -, , - -. , - [6].

    ,,...,,...,, 10 uEEEE , -

    0E ( 0=t ) (-) uE ( tt = ) :

    ,......210 uEEEEE

    (1)

    const= . )(tp (1),

    =++++++

    =

    +=

    +=

    +=

    =

    ,1)('...)('...)(')(')('

    ),()('

    ......................................................................

    ),())1(()()()('

    .....................................................................

    ),()()()2()('

    ),()()()('

    ),()('

    210

    1

    1

    122

    011

    00

    tptptptptp

    tptp

    tpmtpmtp

    tpmtpmtp

    tmptpmtp

    tmptp

    u

    uu

    (2)

    = um , ,,0,)(

    )(' udt

    tdptp == -

    .

  • . . 2012. . 1

    462

    0=t -, (2)

    .0)0(...)0(...)0()0(,1)0( 210 ======= uppppp (3)

    , (2) (3).

    , - :

    =

    =

    +

    =

    +

    =

    =

    =

    =

    =

    =

    +

    =

    =

    1

    0

    0

    1

    0

    222

    1

    0

    ),(1)(

    .............................................................

    ,)1(!

    )(

    )(

    .............................................................

    ),21(!2

    )()(

    ),1(!1

    )(

    ,!0

    1)(

    ui

    iiu

    i

    i

    tiiimt

    i

    i

    ttmt

    tmt

    mt

    tptp

    eCe

    im

    tp

    eeemm

    tp

    eem

    tp

    etp

    i

    C i .

    )(tp

    . r - tt =

    [ ] ...)()(...)()2()()1()( 210 +++++= tputputputuprM

    =

    ==+

    ui

    iiu tpiutp

    0),()()(0... (4)

    r ( ).

    [ ]rM (4) -

    =

    ==

    ui

    ii tpiutF

    0)()()( (5)

  • ,

    463

    (5) )(1 rF (6), -

    r rtt = , - 0=t r -e - , .. )( ru :

    ).(1 rFtt rur

    == (6)

    , - - -, .. .

    - :

    ).1(11 =

    uFt (7) -

    : -

    ; - (7)

    , ; - 1t

    t1 -

    , - [7].

    )(1 1tFu = (8)

    ,

    , , ..

    ,)()()(1

    01

    =

    ==

    ui

    ii tpiutF (9)

    )(1 tF (9) - )1( u .

    , ..

    ),1( 11

    11 =

    uFt

    11 = uu , t1

    (8) . ,

    .

  • . . 2012. . 1

    464

    1. .. - . , 2001. 140 .

    2. .. - : . . : - , 2004. 77 .

    3. : 10 . / . : .. [ .]. .: , 1988. .. - / . . .., .. . 328 .

    4. .. . .: , 1977. 240 .

    5. .., .. . .: , 1976. 128 .

    6. .. . .: . , 1972. 552 .

    7. .. - / . . . . -. 2001. .7. . 3. . 185-188.

    E.A. Yadykin

    QUALITY MANAGEMENT OF FOOD INDUSTRY PRODUCTS BASED ON DISCRETE-ANALYTIC MATHEMATICAL MODELS

    Necessity of wide application of mathematical modelling of objects and processes for food manufactures is shown. The main principles of modelling, examples of mathematical models of processes and objects are resulted.

    Key words: modelling, mathematical model, food manufactures

    12.01.12

Recommended

View more >