# Линейные операторы: Учебное пособие

• View
227

4

Embed Size (px)

Transcript

• ..

.

2004.

• 1. 1. .

2. .

3. .

4. . .

5. .

6. .

7. .

2.

1. .

2. .

3. .

4. .

5. () .

6. -.

7. .

8. .

9. .

10. .

3.

1.

2. .

3. .

4. .

5. .

• 1. 1.

-

, -

. -

. -

,

() .

1.1. V (-

) k, ,

) V V V V,

: (v1, v2) v1+ v2, -

:

Ia) v1+ v2= v2+ v1 ()

IIa) (v1+ v2)+v3=v1+ (v2+v3) ()

IIIa) 0, -

, v+0=v, v V;

IV a) v V v V ,

v+v=0. v

- v.

, V -

.

) kV (,v) v V,

,

:

I) (v1+v2)= v1+ v2 II) (+)v=v+v

,, k, v,v1,v2 V; ( )

• III) () v =( v) (), , k, v V;

IV) 1v=v ()

k

C, R.

. , -

-

.

.

1. V= },...,1,),,...,,{( 21 nikin =

n k.

Vn = ),...,,( 21 Vn = ),...,,( 21

Vn = ),...,,( 21 : iii += ni ,...,1= .

, .. ),...,,( 21 n = .

I, II, I-IV -

k, .. . -

(0,0,,0), n -

. ,

= (1, 2,,-n), , -

. -

.

n, kn.

, n-

n.

• 2. R(a,b)

Rba ),( R.

, .. (f+g)(x)= f(x) +g(x), , )())(( xfxf = ,

),(, baRgf , R, x (a,b).

R(a,b)

R.

2.

-

.

2.1. v1,v2,,vm V -

,

mikim ,...,1,),,...,,( 21 = ,

0...2211 =+++ mmvvv (2.1)

( 0 V.)

, m=1 , v, -

, v=0. -

, v=0, , 11 = , 01 = v . , 0= v

0 , , 1 , v=0.

-

.

2.2. v1,v2,,vm, m2,

V , , -

, ..

mmjjjjj vvvvv +++++= ++ ...... 111111 (2.2)

j mjj ,...,,,..., 111 + .

• m>1. -

2.1. .. ),...,( 1 m , -

j , 0j . (2.1) j

, j,

, :

mj

mj

j

jj

j

j

jj vvvvv

= ++

...... 1

11

11

1 . ..

(2.2).

(2.2), , jv

, :

0...... 111111 =+++++ ++ mmjjjjj vvvvv . -

, 2.1 , ..

),...,,1,,...,( 111 mjj + .

.

2.1. -

, .

. , , s

, ..

0...2211 =+++ ss vvv ,

i .

:

00...0... 12211 =++++++ + msss vvvvv .

-

v1,,vs ,,vm.

, 0v=0, -

,

0v=(0+0)v=0v+ 0v.

• 2.2.

.

.

( ).

2.3. , ,

.

2.1, ,

.

2.4. v1,v2,,vk ,

v1,v2,,vk,v , v -

v1,v2,,vk.

.

vvv k ,,...,1 )0,...,0,...,0(),,...,( 1 k ,

0...2211 =++++ vvvv kk . 0 , .

0= , kvv ,...,1 -

, 0...1 === k .

),,...,( 1 k .

3.

-

. , -

.

( ) 3.1. },,{ 1 nuuU K=

},,{ 1 mwwW K= , mn .

.

m. m=1 1122111 ,...,, wuwuwu nn === . j

, .. -

• ,

U, 2.3. , 1=> mn .

01211122112 == wwuu , .. },{ 21 uu -

. U

(. 2.2.).

, W m-1

m .

mnmnn

mm

wwu

wwu

++=

++=

..................................

...

11

11111

niim ,...,1,0 == . -

mmn

• , }',...'{' 11 = nuuU -

},...,{ 11^

= mwwW .

11 mn , .. mn . .

3.2. },...,{ 1 nuuU = },...,{ 1 mwwW = -

V.

n=m.

: W

},...,,{ 1 ms wwu . ,

su U

W. mn .

U W, nm .

, n=m.

.

3.3. -

, -

. ,

.

.

3.2 , -

. -

.

3.4. -

V -

Vkdim ( k ,

).

:

• 1. nk n n. -

, )0,...,1,...0(=ie , i=1,n nk .

=

==n

iiin ev

11 ),...( . 0

1

==

n

iiie , 0),...( 1 =n , ..

0...21 ==== n . , nee ,...,1

.

2. x

},,)({][0=

==n

ii

ii Nnkaxaxfxk

, n

nxx,...,,1 .

4. .

4.1. V n-

nee ,..,1 .

1. V

=

=n

iiiev

1

, ki .

2. v1,v2,,vm,

m

• .. nee ,..,1 , 0...11 === nn ,

.. nn == ,...,11 .

.

nm eevv ,..,,,.., 11 , ,

. siim

eevv ,..,,,..,11

mvv ,..,1 , . , -

, ..

0......112211

=++++++ss iiiimm

eevvv .

ji

-

, , ji

e -

. , siim

eevv ,..,,,..,11

-

.

, V -

nee ,..,1 , -

nm eevv ,..,,,.., 11 . ,

, siim

eevv ,..,,,..,11

.

siim

eevv ,..,,,..,11

V.

.

kn ,..,1 , Vv

: nneev ++= ...11 , v

nee ,..,1 . nneeu ++= ...11 V,

nnn eeuv )(...)( 111 ++++=+ , nn eev )(...)( 11 ++= , k .

, n

, 3- ,

: -

,

• , -

.

n n .

, , -

.

4.2. V U

k . V U -

(.. ) V U ,

:

)()()( 22112211 vvvv +=+ , kVvv 2121 ,,, .

V n , nee ,..,1

V,

V nk : ),...,,()( 21 nv = , n ,...,, 21 -

v nee ,..,1 . , -

V nk . -

, -

:

)()()( 2121 vvvv +=+ , )()( vv = .

, -

-

. ,

.

4.3. k

, .

• . V W

V W .

nvv ,..,1 - V, )(),..,( 1 nvv - W . -

, Ww Vv , ..

==

===n

iii

n

iii vvvw

11

)()()( .

0)(1

==

n

iii v , 0)(

1

==

n

iiiv . ,

: 0)0( = . .. , 01

==

n

iiiv . -

nvv ,..,1 , 0...1 === n . , -

, )(),..,( 1 nvv

W , , VnW kk dimdim == .

, nVW kk == dimdim . nvv ,..,1 ; nww ,..,1

V W . :

niwv ii ,...,1,)( == . .. nvv ,..,1 V, -

V : ==

=n

iii

n

iii wv

11

)( . -

V -

W , .. nww ,..,1 . -

, .. V W .

5.

V n - , nee ,..,1 nee ',..,'1

. ()

nee ',..,'1 ( -

) :

• nnnnnn

nn

etetete

etetete

+++=

+++=

...'......................

...'

2211

12211111

:

=

nnnn

n

n

nn

ttt

tttttt

eeeeee

K

MM

K

K

21

22221

11211

2121 ),...,,()',...,','(

T -

. ,

-

( )

. T - . T

n ,...,1 , 0...11 =++ nnee . -

nee ,...,1 .

)',...,'( 1 nee ),...,( 1 nee ,

n .

.

==

==n

iii

n

iii exexx

11

'' - x

. ie'

ie :

j

n

j

n

ijii

n

i

n

jjjii

n

iii etxetxexx

= == ==

===

1 11 11'''' .

=

=n

iiiexx

1

-

, :

=

=n

ijiij txx

1

' , nj ,...,1= .

• -

:

=

nnnnn

n

n

n x

xx

ttt

tttttt

x

xx

'

''

2

1

21

22221

11211

2

1

M

K

MM

K

K

M,

XTX 1' = , X , 'X x

, [ ]ijtT = . . V 3- , 321 ,, eee

. x : 321 2 eeex += .

: 3211' eeee += ,

3212 32' eeee += , 3213 63' eeee ++= . x -

. .. -

,

X

,

T .

c , -

.

121

631111321

~

231

310410321

~

531

100410321

~

51714

100010021

~

517

20

100010001

, x :

321 '5'17'20 eeex += .

• 6.

U V.

, U V, -

(.. -

1.1)

, V.

, U -

.

() 6.1. U

V . ..,

Uuu 21, k21,

2211 uu + V .

.

-

. mvv ,...,1

V. -

mvv ,...,1 =

m

iiii kv

1

, .

=

=m

iiivv

1

, =

=m

iii vv

1

'' , =

+=+m

iiii vvv

1

)'(' , im

ii vv

=

=1

)( ,

k . , -

.

6.1. . -

>< mvvv ,...,, 21 .

, -

mvvv ,...,, 21 -

>< mvvv ,...,, 21 . -

.

• WV + U W

V wu + , Uu , Ww .

11 wu + , WUwu ++ 22 ,

WUwwuuwuwu ++++=+++ )()()()( 22112