Анализ и синтез дискретных систем управления технологическими потоками: алгоритмы и программы: Лабораторный практикум

  • Published on
    08-Dec-2016

  • View
    217

  • Download
    0

Embed Size (px)

Transcript

  • ..

    :

    " ",

    " ", " "

    1998

  • 32.965.67 57 681.511(075.8)

    : -: . - , , , , 1965 . .. - 3 . 8 . 1998 . ( LIFE, , ELITE ESPRIT), , . 1995 . 20 - 266 /1/. 2- . , , - . , - ( ) - -. - , - , , - , -1). NN 110-91, 91-14, 91-16, 25-92, 24-92, 78-91, 75-91, 91-91, 91-15, 78-91, 91-12 ., - , -

    1) .. -

    . -: , 1986. -22 . 2

  • , Microsoft Basic QuickBASIC. N 91-030- 050 , - . . - . , , ( ) . - . 1 - 3- - - , .., .., .., .., ., . . /2, 3, 4/. , , , , /5/. . - : (), ; (), (-) (), - . - 1-, 2- ; - 2- - , - -, , - . - , . -

    3

  • . , , . , - . , , - . , . -, , . , , - , . , -, . ( urbo Pascal, QuickBasic QBasic) ., , . - - , . , - , - , , .

    1.1 -

    1.1.1 (), (). - . . 1.1.2 1.1.2.1 . : -

    4

  • , , , , - , - . : . , -, . : ( 100-150 ) , . - : , , , - - : "", "", "", "-" . , , , , , , ( ). 1.1.2.2 , - , . , - 1.1 .

    5

  • 1.1

    : ,, - 4- (~380 , 50 ); QF- , , (..) ; .1- ; - , - ( , - ); - 3- - . - , - ; : FU - , (..); SB1, SB2- "" "". - ; , .2- - . .2 - "", .. SB2; HL- , ; .1- , - . . QF. , - , .. . SB2. : -QF-FU1-SB1- SB2-KM-KK.1-FU2-QF- . , - . - SB2 , - , .2. , . "" SB1, - , - . .. QF ,,. .. FU1 / FU2 - , . - .1 , . 1.1.2.3

    6

  • , - . :

    KM=QF/\FU1i/\SB1i/\(SB2\/KM_2)/\KK_1i/\FU2i; (1.1) M=QF/\KM_1/\KK, (1.2)

    /\ - , - ;

    \/- , - ;

    i- . - . , 1.2, -

    . (. .

    2.1.1), , . - Eureka1) , MathCad2) - . 1.1. - 0, - 1. - . , - - , .

    1.1.3 1.1.3.1 . 1.1.3.2 , - . -.

    1) .. MathCAD: . -.: ,

    1993. -128 . 2) .. Eureka. -.:

    , 1993. -96 .

    7

  • 1.2

    8

  • 1.1.3.3 - .

    1.1.3.4 . 1.1.3.5 . 1.1.3.6 -

    , (Eureka, MathCad), - .

    1.1.3.7 - , -.

    1.1.3.8 . 1.1.4

    1.1.4.1 , . 1.1.4.2 ? 1.1.4.3 . 1.1.4.4 . 1.1.4.5 ? 1.1.4.6 , -

    Eureka MathCAD? 1.1 -

    - -

    QF FU1

    SB1 SB2 KM0 KK KK_1 KM M

    1 1 1 1 0 0 1 1 0 0 2 1 1 1 1 0 1 1 1 0 3 -

    1 1 1 0 1 1 1 1 1

    4 1 1 0 0 0 1 1 0 0 5 -

    0 1 1 0 1 1 1 0 0

    6 - -

    1 0 1 0 0 1 1 0 0

    7 -

    1 1 1 0 1 1 0 0 0

    9

  • 1.2 1.2.1 , () -, (). . . 1.2.2 - , -, . - , . - . "", , "", , - . - 1.3. : KM=QF/\FUi/\SB1.1i/\SB2.1i/\KK1i/\(SB1.2\/SB2.2\/KM2); (1.3) M = QF /\ KM.1 /\ KK. (1.4) 1.4, . 2.1.1.2 , "" "" 1 2. 1.2 . 1.2.3 :

    - ;

    - ;

    - ; 10

  • - ; - ; - , -

    ; - .

    1.3

    1.2 - 11

  • -

    QF

    FU

    SB11

    SB21

    SB12

    SB22

    KM

    1

    KM

    2

    KK

    1

    KK

    KM

    M

    1

    1 1 1 1 0 0 0 0 1 1 0 0

    2 1

    1 1 1 1 1 0 0 0 1 1 1 0

    3 -

    1 1 1 1 0 0 1 1 1 1 1 1

    4 1

    1 1 0 1 0 0 1 1 1 1 0 1

    5 2 -

    1 1 1 1 0 1 0 0 1 1 1 0

    6 -

    1 1 1 1 0 0 1 1 1 1 1 1

    7 2

    1 1 1 0 0 0 1 1 1 1 0 1

    1.2.4

    1.2.4.1 ,

    . 1.2.4.2 ? 1.2.4.3 -

    ? 1.2.4.4 "" "" 2-

    3- . 1.2.4.5 -

    ? 1.2.4.6 , -

    ?

    12

  • 1.4

    13 1.3.

  • 1.3.1 - , . . - . 1.3.2 . , - 1 ("") 2 (""), - 13 23 1.5 - 3- , - L1 L3. - , - L1 L2 - - . - ( 1.6), - "" (SB21, SB21) "" (SB22, SB32). (1.5-1.7)

    KM1 = FUi /\ SBi /\ (SBB \/ KM11) /\ KM22i /\ KK1i; (1.5) KM2 = FUi /\ SBi /\ (SBN \/ KM21) /\ KM12i /\ KK1i; (1.6) M = QF/\ (KM13 \/ KM23) /\ KKi. (1.7)

    1.3 , - . - . 2.1.2 .

    14

  • )

    )

    1.5 ()

    - ()

    15

  • 1.3 -

    -- - Q

    F

    FU

    SB

    SBB

    SBN

    K

    M11

    M

    21

    KM

    12

    KM

    22

    KM

    13

    KM

    23

    KK

    KK

    1

    KM

    1

    KM

    2

    M

    -

    1 1 1 0 0 0 0 1 1 0 0 1 1 0 0 0

    -

    1 1 1 0 1 0 0 1 1 0 0 1 1 0 1 0

    -

    -

    -

    1 1 1 0 0 0 0 1 1 0 0 0 0 0 0 1

    1 1 1 1 0 0 1 1 0 0 1 1 1 0 1 1

    1 1 1 1 0 0 0 1 1 0 0 1 1 1 0 0

    1 1 1 0 0 1 0 0 1 1 0 1 1 1 0 1

    1 1 0 0 0 0 0 1 1 0 0 1 1 0 0 1

    1 1 1 0 0 0 1 1 0 0 1 1 1 0 1 1

    1 1 0 0 0 0 0 1 1 0 0 1 1 0 0 1 0 1 1 0 0 0 0 1 1 0 0 1 1 0 0 0

    1 0 1 0 0 0 0 1 1 0 0 1 1 0 0 1

    1 1 1 0 1 1 0 0 1 1 0 1 1 1 0 1

    16

  • 1.6

    1.3.3

    :

    ;

    -

    , -

    1.3.4

    1.3.4.1 , .

    .

    .3.4.4 "

    ?

    .4.6 ,

    - -

    -;

    - ; - - ; - , , -

    Eureka, MathCad, (1.5 - 1.7);

    - y ; - .

    1.3.4.2 ? 1.3.4.3 1 " " -

    ". 1.3.4.5 1.3 ?

    17

  • 1.7

    18

  • 1.4

    1.4.1 - , - -, - , - 1.4.2

    - - - . . - - - - - - ( , 2 - - 3- - 1 2; : FU1, FU2- "" ; 1, 2, . 1.2 2.2 "", .. , "" -

    ()

    , , .

    : , .

    .

    1.4.2.1

    .

    ,

    1.8. : ,, - 4-

    (~380 , 50 ); QF1 QF2-, ,

    (..) ; 1.1 2.1- 1 2; 1 2-

    , .

    .); 1 ; ,

    ,

    (..); SB1.1, SB2.1, SB1.2, SB2.2- "". 1.2, 2.2-

    SB1.2 SB2.2; 1.3 2.3-

    19

  • , 1 2; 1.1 2.1- 1 2,

    . .

    : -F1-FU1.1-SB1.1- SB1.2-KM1-KK1.1-FU1.2- . 1 , -

    , - 1.3 .

    1.2. QF2,

    , -

    ; HL1 HL2-

    1 2 QF1 QF2 , -, 1. , , .. -. 1 SB1.2. Q 1 1 SB1.2 , - . 1 1 . 1 , 1.3 2 .. "" - QF1 QF2. 1.4.2.2 , . (1.8 - 1.11):

    KM1=QF1/\FU1i/\SB1.1i/\(SB1.2\/KM1.2\/2.3i)/\KK1.1i; (1.8) M1=QF1/\KM1.1/\KK1; (1.9) KM2=QF2/\FU2i/\SB2.1i/\(SB2.2\/KM2.2\/1.3i)/\KK2.1i; (1.10) M2=QF2/\KM2.1/\KK2. (1.11)

    , /\ -

    ; \/- , - ;

    i- . - .

    20

  • )

    )

    ()

    ,

    1.8 ()

    21

  • 1.9

    .

    1.9.

    (22

  • . 2.1.2) , (1.8 - 1.11), - Eureka MathCad. - 0, - , - - -

    1.4.3 :

    - - 2 - ) 2

    - ;

    - ; - - -

    ,

    - - ;

    - -.

    1.4.4 1.4.4.1 -

    1.4.4.2

    1.4.4.3 . 1.4.4.4

    1.4.4.5 ? 1.4.4.6

    , - Eureka MathCAD?

    1.4 -

    1.4, - 1.

    .

    , .

    , ) 1 , , 1 - ;

    ; Eureka MathCad,

    ; ,

    , .

    ?

    .

    23

  • -

    -

    -

    QF1 FU1 SB1.1 SB1.2 1.12 K1.3 KK1.1 QF2 FU2 SB2.1 SB2.2 2.12 K2.3 KK2.1

    KM1 M1 KM2

    2

    1 1 1 1 0 0 1 1 0 1 1 0 0 1 1

    0 0 0 0

    2 1 1 1 1 1 0 1 1 0 1 1 0 0 1 1

    1 0 0 0

    3 1 1 1 0 1 1

    0 1 1 1 1 0 0 1 1

    1 1 0 0

    4 1 0 1 1 1 1 0 0 1 1

    0 1 0 0

    1 1 1 0 0

    5 .1 1 1 1 0 0 1 1 0 2

    0 0 1 1 1 0 0 1 1 1

    6 . 2 1 1 1 0 0 1 1 1 1 1 0 1

    0 0 0 1 1 1

    1.5 -

    .

    , -

    -

    ( 3 1), - (1-2-3) .

    1.5.1

    - (). -

    . -

    1.5.2

    1.5.2.1

    - - -

    . , ,

    , .

    1-3 1 2 3.

    24

  • (

    , , , 2 1

    "

    2.4

    1.10),

    . -

    . - 3.3

    2.3 . -

    ", , , 1.10 1.3 .

    1.10

    1.5.2.2

    25

  • , . (1.12 - 1.17) :

    KM1=QF/\SB1.1i/\(SB1.2\/KM1.2)/\KM2.3/\KK1.1i; (1.12) KM2=QF/\(SB2.1i\/KM1.4)/\(SB2.2\/KM2.2)/\KM3.3/\KK2.1i; (1.13) KM3=QF/\(SB3.1i\/KM2.4)/\(SB3.2\/KM3.2)/\KM4.3/\KK3.1i; (1.14)

    -

    \/-

    - i.

    . - - (. 1.5 - - , .

    1.5.3

    - - -

    -

    - ; ;

    , -

    M1=QF1/\KM1.1/\KK1i; (1.15) M2=QF2/\KM2.1/\KK2i; (1.16) M3=QF3/\KM3.1/\KK3i. (1.17)

    , /\ - ;

    .;

    - ,

    1.11 .

    . 2.1.3) , (1.12 - 1.17), Eureka MathCad. 0, - 1,

    , , . ,

    , : ,

    ) , , ) ;

    ;

    - -

    26

  • Eureka MathCad, ;

    .

    1.11

    ,

    - y , - ;

    -

    1.5 -

    27

  • 1

    2

    3

    -

    QF

    KK

    SB11

    SB12

    SB21

    SB22

    SB31

    SB32

    KM

    KM

    KM

    KM

    1

    M1

    KM

    2

    M2

    KM

    3

    M3

    1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0

    3

    1 1 1 0 1 0 1 1 0 0 0 0 0 0 0 1 0

    3

    1 1 1 0 1 0 1 0 0 0 0 0 0 0 0 1 1

    2

    1 1 1 0 1 1 1 0 0 0 1 0 0 1 0 1 1

    2

    1 1 1 0 1 0 1 0 0 1 1 0 0 1 1 1 1

    1

    1 1 1 1 1 0 1 0 0 1 1 1 0 1 1 1 1

    1

    1 1 1 0 1 0 1 0 1 1 1 1 1 1 1 1 1

    . 1 1 0 0 1 0 1 0 1 1 1 0 1 1 1 1 1

    1 1 1 0 1 0 1 0 0 1 1 0 0 1 1 1 1

    . 1 1 1 0 0 0 1 0 0 1 1 0 0 0 1 1 1

    1 1 1 0 1 0 1 0 0 0 1 0 0 0 0 1 1

    . 1 1 1 0 1 0 0 0 0 0 1 0 0 0 0 0 1

    1 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0

    1 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0

    .

    1 1 1 0 0 0 1 0 1 1 1 1 1 1 1 1 1

    SB11

    1 SB21

    2 SB31

    3 SB22 SB21

    28

    1.5.4

  • 1.5.4.1 , . -

    ? .4.3 -

    . 1.5.4.4

    . 5.

    . , Eureka M C ?

    -

    .1

    -

    ).

    1.6.2

    - . .

    . , ,

    . , . - . , . - . .

    1, 2,..., n, 1, Y2,..., Ym. - , n m - . , i (i=1, 2,..., n) - c Yj (j=1, 2,..., m).

    . ,

    1.5.4.2

    1.5

    1.1.5

    4.54.6

    ? -

    ath AD

    1.6 ,

    1.6

    (

    , -

    ( ) -

    .

    -

    -

    -

    Y

    29

  • , -

    .

    Yj; 3 Zs -

    (Xi, Zs) Yj; 5 G, Yj.

    - Yj, Zs . (. 4 5),

    Z(t+1) = F( X(t (1.18)

    Y(t) = G(X(T), (1.19)

    X(t) X, Y(t) Y.

    .

    , , .

    - : 1 i;

    2) ; 4 F,

    (Xi, Zs) , < Xi, Yj, Zs, F, G>. -

    Xi,

    ), Z(t)), Z(t)),

    Z(t+1), Z(t) Z,

    X, Y, Z F G

    1 (). Z -

    . (1.18, 1.19) - Y(t) = G(X(T)). (1.20)

    2 . < Xi, Yj, F, G>. (1.18, 1.19) - Z(t+1) = F(Z(t)), (1.21)

    Y(t) = G(Z(t)). (1.22) 3 . Y < Xi, Zs, F>. (1.18, 1.19) - Z(t+1) = F( X(t), Z(t)), (1.23) 4 . G Z(t) (1.18, 1.19)

    30

  • 31

    Z(t+1) = F( X(t), Z(t)), (1.24) Y(t) = G(Z(t)), (1.25)

    5 . G Z(t+1), (1.18, 1.19)

    , -

    (-), .

    - ;

    ; -

    , ;

    .

    ), - . n 2n

    .

    Z(t+1) = F( X(t), Z(t)), (1.26) Y(t) = G(Z(t+1)). (1.27) F G , - , .

    1.6.2.1 : - () (). . (), , :

    - ,

    - , - ( ) -,

    , -

    - , , . , -

    1.6.2.2

    , , - ( . -

  • . . - , b, 2b 3b, -

    . 1,

    . 1, 2 3, ( 1.6): 1.

    2, 3), B1 ( 1,2 4); 2. 2b -

    1 3 ( 7).

    8 ( , . -,

    - -

    ,

    -, -

    2 3 (, ), b - (1 -( 2 2 3), B2 ( 3 6); 3. - 3b - ,

    ) (n=3). 0 1 5 , - 1 3 2. - Z ( , ).

    1.6.2.3

    5-6- () .

    , ,

    . - - .

    , . 1.6 -

    NN

    D1 D2 D3 1 2 3 NN

    D1 D2 D3 1 2 3

    0 0 0 0 0 0 0 4 0 0 1 1 0 0 1 1 0 0 1 0 0 5 1 0 1 z z z 2 1 0 1 0 0 1 0 1 0 0 6 0 1 3 1 1 0 0 1 0 7 1 1 1 0 0 1

    32

    1.12 , 3 . 1i2i 1 2i 1 2 1i2 1i2i 1 2i 1 2 1i2

    0 1 0 1 3i 0 0 1 0

  • 1 z 0 0 3 0 z 0 1 ) )

    1i2i 1 2i 1 2 1i23i 0 0 0 0 3 0 z 1 0

    ) 1.12 - B1, B2 B3 1.6.2.4 , ,

    i; (1.29) 1.4 = D1i/\D2i/\D3; (1.30)

    B1 = B ) B2.3 = (1.32)

    2.6 = D1i/\D2/\D3; (1.33) = B

    - 1.14. -

    , . , B1, B2, B3 Z (1.28-1.31, 1.32-1.34, 1.35 1.36) - (1.37): B1.1 = D1/\D2i/\D3i; (1.28) B1.2 = D1i/\D2/\D3B

    1.1 \/ B1.2 \/ B1.4; (1.31 D1/\D2/\D3i;

    BB2 2.3 \/ B2.6; (1.34) B3.7 = B3 = D1/\D2/\D3; (1.35) Z = D1/\D2i/\D3; (1.36) = B1\/B2\/B3\/Z. (1.37) , - 1.13 , 2.3.1.

    33

  • 1.13

    1.6.3

    b, 2b, 3b 4b. - 1,...,4. 1,...,4. - . , -

    , 1.6 1.12.

    34

  • .

    1.14

    35

  • 1.6.4

    1.6.4.1 , 1.6.4.2 - 3 1.6.4.3 - 3 1.6.4.4 - 3 - . 1.6.4.5 ( 1.6.4.6 - . 1.6.4.7

    1.7 , -

    1.7.1 - 1.7.2 1.7.2.1 - -, . - -

    (-) . () - . - 4- 1, 2, 3, 4 12- 1,...,12 - 1.7.

    . 1+2+3-2.

    1, 2 3.

    3

    ).

    4

    .

    , ().

    .

    .

    , 36

  • : 0 1 - ; u - -

    1, 2, 3 4 16-

    (0,0,1,1)]} a...

Recommended

View more >