Основные понятия теории надежности

  • Published on
    08-Dec-2016

  • View
    214

  • Download
    1

Embed Size (px)

Transcript

  • , 7 , 8 , 2 0 0 1

    108

    .

    ., 20

    01

    . .

    ,

    BASIC CONCEPTS OF RELIABILITY THEORY

    A. N. ZHIRABOK

    Some of the results of the mathematical theoryof technical systems reliability are reported. Thebasic reliability indicators and their characteris-tics are presented, and the methods to increasereliability are discussed. Taking the failure rateas an example, it is shown that there are certainsimilarities between the world of living natureand the artificial world of technology.

    - . , - . - , - - .

    . -, - - ; , , ( , ) . -, , - - ; , - .. [1] . -, - , () -, , -, .

    , - , ( ) - , . - I, , - : - -, , , . - , . - - . , , , -. , -. , - , , : - 25 , - , -, ,

    www.issep.rssi.ru

  • . .

    109

    [2].

    - : 1) , , - -; 2) ( , - ..); 3) , (, );4) , - ( , , -). , - -, . - - .

    .

    - , - . , - : -, , -. , .

    , - , - , , . : - . . 1, - - , , , - , .. .

    -. -

    T

    .

    T

    . -

    T

    , -.

    T

    , -, - . - -, - , . [3].

    , , - (0,

    t

    ) . , - , -

    P

    (

    t

    ).

    P

    (

    t

    ) , ,

    T

    (0,

    t

    ).

    P

    (

    t

    ) = (

    T

    >

    t

    ).

    ,

    Q

    (

    t

    ), -

    Q

    (

    t

    ) = (

    T

    #

    t

    ). - ,

    P

    (

    t

    ) +

    Q

    (

    t

    ) = 1. ,

    P

    (

    t

    ) ,

    Q

    (

    t

    ) . . 2.

    -

    (

    t

    ), . - -, . ,

    1

    2

    x

    t

    . 1.

    x

    - (

    1

    ) (

    2

    ) ; ,

  • , 7 , 8 , 2 0 0 1

    110

    . -

    (1)

    n

    (

    t

    )

    t

    ,

    n

    (

    t

    ) -,

    t

    .

    t

    - . -; ,

    (

    t

    ) ,

    t

    , .

    ,

    (

    t

    ) - . -

    (

    t

    ) . 3,

    . -

    (

    t

    ):

    t( ) = n t( )t n t( )--------------------,

    t( ) = m t( )t m t( )---------------------,

    m

    (

    t

    )

    t

    ,

    m

    (

    t

    ) -,

    t

    .

    t

    - ( -) ( ). , ,

    (

    t

    )

    (

    t

    ) . ,

    (

    t

    ) - .

    I.

    , - , - . . 3,

    , - . - ( ) , - , ., , - ( ) - , , - ( ).

    II.

    - - - (), (, ) . - ( , - ) - . , , , -, , -.

    III.

    , - -, - . , - , - - .. , - ( ).

    , - ( ), - . - ,

    2

    1

    1

    0

    P, Q

    t

    . 2.

    P

    (

    t

    ) (

    1

    )

    Q

    (

    t

    ) (

    2

    )

    I II III t

    I II III t

    . 3.

    (

    ) (

    ).

  • . .

    111

    ( - ) - .

    , (1):

    (2)

    , -

    . (2) :

    P

    (

    t

    ) =

    e

    t

    . (3)

    , ,

    T

    .

    , . , - -. , (, ), - .

    T

    *, - () T. T* - P(t); == const :

    (4)

    -, - 108106 1. -, 1 , 100 . , , , - .

    , - - [4, 5].

    t( ) = dP t( ) dtP t( )

    ----------------------- .

    T* = 1---.

    ( ) -. , - . (. 4) (0, t) (t, t + )

    A B: A - (0, t), B - (t, t + ). AB (0, t + ). - A AB (3)

    P(A) = et, P(AB) = e(t + ).

    P(B/A), B , A :

    (5)

    ., P(B/A) , (t, t + ) , t . (5), (t, t + ) , - t. , - . , - = const , - . , = const - , .

    , - .. (). , , - . , P(t + )/P(t) t, T [4].

    -: , n - 1, 2, , n .

    P B A( ) = P AB( )P A( )

    ---------------- = e t +( )

    e t---------------- = e .

    0 t t + t

    . 4. -

  • , 7 , 8 , 2 0 0 1112

    ? , - . ( ) - : - . - (. 5): . , , - , , - , - - ( ). - .

    Ai , , ti- , i = 1, 2, , n; A - . A A1, A2, , An, , A1, A2, , An . - - ,

    P(A) = P(A1)P(A2)P(An)

    .

    , (, - , - .), .

    et = e

    1t e2t e

    nt .

    = i,i 1=

    n

    - , . . , -. -, . - .

    r -, . - : - 1, 2, 3 r + 2 . (. 6, ), - () . - . - , - , , . - - , - .

    Pi(t) - i- t, i = 1, 2, - . , , -

    1 2 n

    . 5.

    1 2 320 0 + 3

    23

    1 2 r + 1 r + 2(r + 1) r 2

    1 2 r + 1 r + 2

    . 6. (a) () ()

  • . . 113

    [5]. - , - , Pr + 2(t). - , :

    (6)

    , - r P(t) 1 ( - ). -, , (6) , et. - et et 1, , - .

    - , - , - - , . - (. 6, ), : (r + 1), r , r + 1, ..; - ., .

    , - . - . - t 1 et, t Q(t) = (1 et)r + 1 (, ). 1, :

    P(t) = 1 (1 et)r + 1.

    - . - : - -, , (4)

    P t( ) = e t 1 t t( )2

    2------------ t( )

    r 1+

    r 1+-----------------+ + + +

    .

    T* = (r + 1)/. :

    , , : , , , r ; - , - -.

    , - : - (, ), . ; - , . . 6, : - , - -. :

    = + . - :

    R(t) . 7. ,

    T* = 1--- 1 1

    2--- 1

    3--- 1

    r 1+-----------+ + + +

    .

    P t( ) =

    ----------------e 2 t

    2

    --------e t ,+

    R t( ) = P t( )e t---------- =

    ----------------e t2

    --------.+

    2

    1

    1

    R

    t

    3

    . 7. R(t) - - : 1 $ , 2 # , 3 =

  • , 7 , 8 , 2 0 0 1114

    , . , - . , , - .

    , (- = const), - , , [1] - .

    1. .. // -. 1997. 3. . 139143.

    2. .., .. . .:, 1980. 192 .

    3. .., .. - . .: , 1988. 480 .

    4. .., .., .. . .: , 1965. 524 .

    5. .. . .: . ,1972. 552 .

    ..

    * * *

    , ,, . - - . - , - . 120 , - .

Recommended

View more >