ДИНАМИКА КЛЕТОЧНЫХ СИСТЕМ IN VITRO. І. ОРГАНИЗАЦИЯ ВО ВРЕМЕНИ И СТАБИЛЬНОСТЬ СИСТЕМЫ КУЛЬТУРЫ ТКАНЕЙ РАУВОЛЬФИИ ЗМЕИНОЙ НА СУТОЧНОМ УРОВНЕ ОРГАНИЗАЦИИ

  • Published on
    05-Apr-2017

  • View
    221

  • Download
    6

Embed Size (px)

Transcript

  • 25

    . . , , . , , , , [1, 2]. . .

    , , in vitro, (, ,

    . .). in vitro (), . .

    [3, 4]. , , , [37]. in vitro , . .

    575.23+615.222:581.143.6

    in vitroin vitro . . . .

    : in vitro, , , Rauwolfia serpentina.

    . . . . ,

    ?mail: kunakh@imbg.org.ua

    , , . .

    , . ( ) 27 Rauwolfia serpentina . , .

  • , . 4, 5, 2011

    26

    . . , . : [3, 4]. .

    27Rauwolfia serpentina . , [8, 9]. ( ) . .

    K27 Rauwolfia serpentina, 5 10 [10, 11] [12] 10 , . Rauwolfia serpentina 40 , . 27 , [4,13]. [4, 14]. 27 , [15, 16]. , , , ,

    , . , , 60% [17]. 27 Rauwolfia serpentina .

    , , , . , ( ), . ( ) , (, ), (, , ) (, ) [18, 19]. , (, ), (, ), .

    , [20]. ( )

    b27(10 ) 150

    10 [11]

    b27(5 )

    5

    [10]

    b27()

    [12]

  • 27

    ( ) , : 1215 27 (10 ) 911 27(). 5 . .

    () [21], 100 . ScionImage.

    [22], . , , ( ).

    . , [8, 9]. [23].

    . . . , , (, ) [24]. , , [25]. .

    . x ( x, ), x(t) = x0 + x(t). :

    dx/dt = x, , x(t) . x3 x03+ 3x02 x x, x0 = 0 ( ). :

    x(t) = x(0)exp(t). , > 0

    x0 = 0 , < 0, , x(t) . . , x(t), , :

    : i = i.

    , x(t) [26].

    , ( ). : , F, F , , [23].

    [8, 9] ( , : ) ( , X1,

    {

    = lim[ ( )]/ .i ix t t

  • , . 4, 5, 2011

    28

    X2). . () , :

    I1(t) 1,02,9, I2(t) 3,06,9 27(10 ) 3,08,9 27(), (Il(t), l = 1,2). ( ), , Lls = RlskAlsk (Xlk(t), s = 1,2), (t , m t , , k , , , , , t + m t + m + k). (Rlsk) , (, ), : X1(t + k) X2(t + k) I1(t) I2(t) (. 1, 2). Als , [8, 9], , .

    .

    , , , , () , (. 1, , ), , 10 . X1 X2 (. 1, ) (l1 = 0, l2 < 0) (). , , :

    36

    ( ) ( ) ( ) ( ),m

    l lm ls lsk sks k m

    I t I t m A R t k X t k+

    =

    = = + +

    1. Rlsk *, **

    k (k = 133)

    k

    ,

    b27 (10 ) b27 ()

    I1(Xlk) I2(Xlk) I1(Xlk) I2(Xlk)

    R11k R12k R21k R22k R11k R12k R21k R22k0 0 0 0,40 0,42 0,49 0,42 0,53 0 0

    1 2 0 0,40 0 0,43 0 0,50 0 0

    2 4 0 0,47 0 0,41 0 0,52 0 0

    3 6 0 0,47 0 0,39 0 0,57 0 0

    4 8 0 0,44 0 0,37 0 0,56 0 0

    5 10 0,370,52 0 0,42 0 0,63 0 0

    6 12 0,470,50 0 0,37 0 0,69 0 0,47

    7 14 0 0 0 0 0 0,52 0 0,49

    8 16 0 0 0 0 0 0,38 0 0

    9 18 0 0 0 0 0 0 0,41 0

    10 20 0 0 0 0 0 0 0,41 0

    11 22 0 0 0,46 0 0 0 0 0

    12 24 0 0,49 0,700,55 0 0 0 0

    13 26 0 0,53 0,430,70 0 0,59 0,60 0

    14 28 0 0 0 0 0 0 0,66 0,49

    15 20 0 0 0 0 0 0 0 0

    16 32 0,63 0 0 0,48 0 0 0 0

    17 34 0,81 0 0 0,71 0 0 0 0

    18 36 0,61 0 0 0,54 0 0 0 0

    19 38 0 0 0 0 0 0 0 0

    20 40 0 0,50 0 0 0 0 0 0,60

    21 42 0 0,55 0 0 0 0 0 0,64

    22 44 0 0 0 0 0 0 0 0,64

    23 46 0 0 0 0 0 0 0 0

    24 48 0 0 0 0 0 0 0 0

    25 50 0 0 0 0 0,71 0 0 0,63

    26 52 0 0 0 0 0 0 0 0

    27 54 0 0 0 0 0 0 0 0

    28 56 0 0 0 0 0 0 0 0

    29 58 0 0 0 0 0 0 0 0

    30 60 0 0 0 0 0,88 0,82 0 0

    31 62 0 0 0 0 0 0 0 0

    32 64 0 0 0 0 0 0 0 0

    33 66 0 0 0 0 0 0 0 0

    . * I1 1,02,9; I2 3,06,8 27 (10 ) 3,08,9 (I2) 27 ().

    ** C X1k , (l = 1) (l = 2). . F1,N2 = (N 2)R

    2/(1 R2), 5% F, N = 36 F1,34 = 4,17 ( k = 0) N = 6 F1,4 = 7,71 (31 k = 30).

  • 29

    (. 1, 2), , , , , , : (. 1, 3). Rauwolfiaserpentina . 3.

    10 , , () , , .

    2. Rlsk *, **

    k (k = 133)

    k

    ,

    b27 (10 ) b27 ()

    I1(Xlk) I2(Xlk) I1(Xlk) I2(Xlk)

    R11k R12k R21k R22k R11k R12k R21k R22k0 0 0 0 0,50 0 0 0 0,35 0

    1 2 0 0 0 0 0,39 0 0,42 0,36

    2 4 0 0 0 0 0 0,50 0 0,57

    3 6 0 0 0 0 0 0,59 0 0,62

    4 8 0 0 0 0 0 0,41 0 0,48

    5 10 0 0 0,45 0 0,41 0 0,38 0

    6 12 0 0 0,38 0 0,46 0 0,40 0

    7 14 0 0 0 0 0 0 0 0

    8 16 0 0 0 0 0 0 0 0

    9 18 0 0 0 0 0,39 0,48 0 0,41

    10 20 0 0 0 0 0 0,43 0 0

    11 22 0 0 0 0 0 0 0 0

    12 24 0 0 0 0 0 0 0 0

    13 26 0,41 0 0 0 0 0 0 0,42

    14 28 0,46 0 0 0 0 0 0 0,54

    15 20 0 0 0 0 0 0 0 0

    16 32 0 0 0 0 0 0 0 0

    17 34 0 0,56 0 0 0 0 0 0

    18 36 0 0 0 0 0 0 0 0

    19 38 0 0 0 0 0 0 0 0

    20 40 0 0 0,52 0 0 0,60 0 0,64

    21 42 0 0 0 0 0 0,72 0 0,73

    22 44 0 0 0 0 0 0 0 0,53

    23 46 0 0 0 0 0 0 0 0

    24 48 0 0 0 0,82 0 0 0 0

    25 50 0 0,81 0 0,68 0 0 0 0

    26 52 0 0,65 0 0 0 0 0 0

    27 54 0 0 0 0 0 0 0 0

    28 56 0 0 0 0 0 0 0 0

    29 58 0 0 0 0 0 0 0 0

    30 60 0 0 0 0 0 0 0 0

    31 62 0 0 0 0 0 0,91 0 0,92

    32 64 0 0 0 0 0 0 0 0

    33 66 0 0 0 0 0 0 0 0

    . * I1 12,016,9 27 (10 ) 8 2 27 (); I2 17 2 27 (10 ) 8 2 27 ();

    ** X1k , (l = 1) (l = 2). 5% F, N = 36 F1,34 = 4,17 ( k = 0), N = 6 F1,4 = 7,71 (31 k = 30).

    . 1. , (X1) () ( , X2) () b 10 ().

    1215 . X1 , ,X2 , ( ). (, ) , R2 0,0122 0,2025. : F1,19 = 0,288, 5% F N = 21(F1,19 = 4,38), F1,21 = 5,33 5% F N = 23 (F1,21 = 4,32), X2. (, ) , ()

    1

    t,

    2

    2

    1

  • , . 4, 5, 2011

    30

    . 2. 12,99 (X1) () 36,99 (X2) () 10

    (). 1215 . X1 12,99 ( ), X2 36,99 ( ). (, ) , R2 0,1718 0,3868. : F1,22 = 4,55, F1,23 = 14,51 5% F N = 24 (F1,22 = 4,3) N = 25 (F1,23 = 4,28), X1 X2

    3. Rauwolfia serpentina

    1 2 3 4

    b

    10 D E ( ) 1 > 0, 2 < 0 1 > 0, 2 = 0

    D E ( ) 1 > 0, 2 = 0 1>0, 2 < 0

    2n3n ( ) 1 < 0, 2 = 0

    5 C 3n4n ( ) 2 = 0, 3 > 0

    2n4n 1 < 0, 3 > 0

    1 2 3 4

    10 D E ( ) 1 = 0, 2 < 0

    D E ( ) 1 = 0, 2 > 0

    : (D E) , ;(D E) ; D, E, D, E . 4; 2n ; 3n ; 4n .

    1

    t,

    2

    2

    1

  • 31

    . 3. < 10,99 2 (X1), 12,016,99 2 (X2)

    >17 2 (X3) (, ) 10 ():

    1215 . X1 17

    2 ( ). X1X2; X1X3; X2X3. (, ) , R2 : X1 0,3835, X2 0,2859, X3 0,0731. : X1 F1,34 =21,15, X2 F1,33 = 13,2, X3 F1,21 = 1,66 5% F N = 36(F1,34 = 4,17), N = 35 (F1,33 = 4,17) N = 23 (F1,21 = 4,32), X1 X2 X3

    II

    I

    III

    1

    t,

    2

    2

    1

    1

    t,

    3

    3

    1

    2

    t,

    3

    2

    3

  • , . 4, 5, 2011

    32

    , .

    10 :

    , .

    , [24], , , .

    , , 5 [3, 4] , . , , ,

    ( ) [24], , [8]. , [4 ], (. 4).

    , , (X1 ,X2 , X3 ), , , X1X2 X2X3, , X1X3 . , , X1X3 ( ), , . X1X3 , , , 5 [8].

    in vitro

    [27, 28] () , Arabidopsis thaliana, , () . , [27, 29], , . , (). , ,

    (1)

    (2)

    1

    2

    2

    3

    : ( ).

    (1)

    (2)

    1

    2

    2

    3

  • 33

    . 4. (X1), (X2) b (X3) (, )

    5 ( ) ():

    46 . X1 ( ), X2 ( ), X3 ( ). X1X2; X1X3; X2X3. (, ) , R2 : X1 0,5348, X2 0,0062 X3 0,6019. : X1 F1,25 = 28,75, X2 F1,25 = 0,15, X3 F1,25 = 37,8 5% F N = 27 (F1,25 = 4,24), X1 X3 X2

    II

    I

    III

    1

    t,

    2

    2

    1

    1

    t,

    3

    3

    1

    2

    t,

    3

    2

    3

  • , . 4, 5, 2011

    34

    (. 5) [29]. , , m [30], , , , .

    , , () , (, D E . 5), (, D E (< 3C > 3C) , D E . 4 ). , , . 1, 2, , ?. , , . 1, 2 [8, 9], , , . , , , , , , , . , [30], ( ) (), .

    , , , (. 1, 2).

    ( ), , ( ) , m3. , m1, . , m2, : , . [30] m ( ), R ( ) N( , ) : G0 (), G1 ( ), S ( ), G2 ( ) , , , ( ). , , , , , . G0 , , : ; , ; [30, 31].

    , (, ), R N ( ), ,

    . 5. :

    : Es 3 , ; ES2 , . ( [29])

  • 35

    . , (. 5) . , , , ( ), < 3C > 3C [8]. [9]. ( . 5), D E . D E ( ) D E ( ), , ( ), A, B, C , m, R N. , , ( ) ( , , ), , , . 1 2. , , (, ), , ( N), , , ( , N, , m m R). , : ( ),

    ( ).

    , , . 5 , (. 6, . 4).

    . ( m3), , , , [30]; (), ; ( ) . , (), , (, ). , (D E)

    . 6.

    ,

    ,

  • , . 4, 5, 2011

    36

    1. . . .: , 1966. 251 .

    2. . . .:, 1979. 287 .

    3. . . . 5.

    in vitro// . 1999. . 15, 5. . 343359.

    4. . . . . .: . 2005. 730 .

    5. Balog C. The mitotic index in diploid andtriploid Allium roots // Cytologia. 1982. V. 47, N 34. P. 689697.

    [8, 9] D E, D (3 ) (. 4, . 6).

    , , invitro . , . 10 ; ; , 5 ,

    , , ; , 10 , . in vitro , 10 5 , , . , , .

    4. b27 Rauwolfia serpentina

    b

    ()

    b

    () (2)

    A(m1) B(m2) C(m3) A(m1) B(m2) C(m3)

    10 030 D (1,02,9) E (3,06,9) E (3,06,9) D (12,016,9) E (>17) E (>17)020 D (1,02,9) E (3,06,9) E (3,06,9) D (12,016,9) E (>17) E (>17)

    5 C 040 E (3,06,9) D (1,02,9) D (1,02,9) E (>5) D (8) E (>8)

    . A, B, C , , ; DE , .

  • 37

    6. Stephens C. E. Daily mitotic cycle in commononion, Allium cepa // Ibid. 1984. V. 49,N 4. P. 679684.

    7. . ., . . // . 1996. . 38, 7. . 718725.

    8. . ., . ., ? . ., . . Rauwolfiaserpentina Benth. in vitro // . 2008. . 24, 6. . 476486.

    9. . ., . ., ? . ., . . Rauwolfiaserpentina Benth. in vitro // . . . 2008. . 6, 1. . 98107.

    10. . ., . ., ? . . Rauwolfia serpentinaBent. // . . 1979. . 15, 4. C. 516526.

    11. . ., . ., ? . . . . . 1167895 08.03.1985 ( .).

    12. . ., . ., . . (Rauwolfia serpentina Benth.) // . . 1981. . 17, . 2. . 217224.

    13. Kunakh V. A. Somaclonal variation inRauwolfia // Y.P.S. Bajaj (ed.) Biotechnology in agriculture and forestry, V. 36. Somaclonal variation in crop improvement. II. Berlin, Heidelberg, New York: Springer,1996. P. 315332.

    14. . . , Rauwolfiaserpentina Benth. // . 1994. . 10, 1. . 330.

    15. . ., . ., . ., . . 27Rauwolfia serpentina Benth. // . 2007. . 23, 2. . 8692.

    16. . ., . ., . ., . . in vitro // . . 2007. 10. . 147152.

    17. . ., . ., . .

    Rauwolfia serpentina Benth. in vitro //. 2001. 4. . 921.

    18. . ., . ., ., . . in vitro Rauwolfia serpentinaBenth. // . 2006. 2. . 7895.

    19. . . . ., ?? ., . . Rauwolfia serpentina Benth. in vitro // . 2008. . 24, 4. . 300309.

    20. . ., . . // . 1975. . 9, 1. . 5658.

    21. Kiernon J. A. Histological and HistochemicalMethods. Theory and Practice. NewYork:Pergamon, 1990. P. 136364.

    22. . . // . 1990. . 30, 4. . 496501.

    23. . . .: , 1982. 344 .

    24. Klevecz R. R., Li C. M., Marcus I., Frankel P. H.Collective behavior in gene regulation: Thecell is an oscillator, the cell cycle a developmental process // FEBS J. 2008. V. 275. P. 23722384.

    25. . ., . ., ? . . . : , , 1990. 170 .

    26. . . . .: . ,1997. 183 .

    27. . . // . . . 1982. . 43, 1. . 7987.

    28. . ., . . // . . 2001. . 35, 6. . 10881094.

    29. . . : // . 2006. . 42, 9. . 12761296.

    30. . . // . 1986. 10. . 5061.

    31. . ., . ., . . . // . 1978. . 239. . 12551258.

  • , . 4, 5, 2011

    38

    in vitro.

    .

    . . . .

    ,

    ?mail: kunakh@imbg.org.ua

    , , . .

    , . , ( ) 27 Rauwolfiaserpentina . , .

    : invitro, , , Rauwolfia serpentina.

    THE DYNAMICS OF CELL SYSTEMS in vitro.

    . TEMPORAL ORGANIZATION AND STABILITY

    OF Rauwolfia serpentina CULTURE TISSUES AT CIRCADIAN LEVEL

    N. Yu. iryutaV. . Kunakh

    Institute of Molecular Biology and Genetics of National Academy of Sciences of Ukraine,

    Kyiv

    ?mail: kunakh@imbg.org.ua

    Growth and development as a completeorganism as a plant tissue culture were determined by oscillation changes of the cell systemdynamics characteristics that formed corresponding tissues or an organism as a whole.However these basic processes are not wellunderstood.

    The dynamics of cell systems has been studied on the example of Rauwolfia serpentinaBenth culture tissues, in particular their organization in time for the daily level of the hierarchy.The phase trajectories of the cell part dynamicswith different DNA content in the nucleus anddifferent nucleolus area, as well as dynamics ofproliferation indexes (mitosis and amitosis)under variation of cultivation conditions for thehighproductive Rauwolfia serpentina K27strain (antiarhythmic alkaloid ajmaline producer) were determined by Liapunov indexes. Theapplied biotechnological methods of productivity increasing in the researched cell culture havebeen assumed to use dynamics hereditary memory mechanisms.

    Key words: cell population in vitro, dynamic ofthe cell systems, phase trajectories, Rauwolfiaserpentina.

Recommended

View more >