НЕЛИНЕЙНЫЕ ОПЕРАТОРЫ В SF-ПРОСТРАНСТВАХ С КОНУСОМ

  • Published on
    31-Mar-2017

  • View
    215

  • Download
    2

Embed Size (px)

Transcript

  • 15, 2009

    517

    . .

    SF -

    SF - .

    1. X ( =C R), . - p(x), x X, :

    1) p(x) 0, p(x) = 0 x = ;2) p(nxn x) 0 {n} {xn} X , n p(xn x) 0;

    3) p(xn + yn x y) 0 {xn}, {yn}, p(xn x) 0 p(yn y) 0;

    4) p(x) = p(x) x X , || = 1;5) p(xn) p(x) {xn} X ,

    p(xn x) 0.

    p SF - [1]., , X -

    , {S(x, r)} (x X, r > 0), S(x, r) = {y X, p(y x) < r}, (X, p) SF -.

    p(1x) p(2x) x X |1| |2|, p - SF -.

    SF - - . F - SF - [1].

    c . . , 2009

  • SF - 13

    2. , X SF -.

    K X , x K, x 6= , x K 0 x / K.

    K X SF -X -: x > y, xy K. x > ( K) . K : {xn}, {yn} ( x y) X, K, xn x, yn y n, xn 6 yn (n = 1, 2, . . .), x 6 y.

    X -, , .

    M X , - , . - X

    v, w = {x X|v 6 x 6 w}. (1)

    v, w . , -

    SF - X, . -, , X (. [3]).

    1. K X , - :

    x = sup{x1, x2, . . . , xn},

    , .

    2. K X ,

    x1 6 x2 6 . . . 6 xn 6 . . . , (2)

    xn 6 y (n = 1, 2, . . .), (3)

  • 14 . .

    X.

    3. K X -, xn 6 yn 6 zn xn u, zn u , yn u.

    3. , SF - K, A, X, , A -, .

    4. A, SF - X,

    , A(K) K; M X, x, y M x 6 y

    A(x) 6 A(y).

    , -.

    A, SF -- X, v0 w0,

    v0 6 w0, A(v0) > v0, A(w0) 6 w0. (4)

    A v0, w0 . -, v0 6 x 6 w0

    v0 6 A(v0) 6 A(x) 6 A(w0) 6 w0.

    vn = A(vn1), wn = A(wn1) (n = 1, 2, . . .). (5)

    , (4), , . - , K . A , (5) . ,

    v = A(v), w = A(w),

    v, w {vn} {wn} -. v w .

  • SF - 15

    , - Ax = x X - A - - v0, w0, (4). , - .

    1. K SF - X A v0, w0, . A v0, w0, , . - (5) A.

    2. K SF -X , - A :

    1) v0, w0 ;2) ;3) v0, w0.

    yn = A(yn1), n = 1, 2, . . . , (6)

    x, y0 v0, w0 X.

    . (5) (6) -

    vn 6 yn 6 wn, n = 1, 2, . . . (7)

    (5) - A. , (5) . , (. [2]). , - (6) x. . 2

    .

    3. ( [3]). K SF - X . - A ( ), - v0, w0, v0, w0, , .

  • 16 . .

    ResumeSome fixed point theorems for nonlinear monotone operators in SF -space

    with a cone are proved.

    [1] Michenrda B. Bernsteins "lethargy"theorems in SF -spaces / B. Michendra// J. for Analysis and its Applications. V. 22 (2003). No 1. P. 316.

    [2] McArtur C. V. Convergence of monotone nets in ordered topological vectorspaces / C. V. McArtur // Studia Math. 34 (1970). P. 116.

    [3] . . /. . , . . . : - , 1984.

    , ,185910, , . , 33

Recommended

View more >