02 Technical

  • Published on
    12-Nov-2015

  • View
    224

  • Download
    5

Embed Size (px)

DESCRIPTION

manual instruction

Transcript

<ul><li><p>Dongbu CNI</p><p>Dongbu CNI</p><p>Dongbu CNI</p><p>Dongbu CNI</p><p>Dongbu CNI</p><p> Inductance of Wound Cores</p><p>The inductance of a core and the number of turns can be calculated by using the following formula.</p><p>Magnetic Design Formula</p><p>L = Where L = induntance (H) = core permeability N = number of turns A = core cross section area (cm2) l = mean magnetic path length (cm) LN = inductance for N turns (H) AL = nominal inductance(nH/N2)</p><p> Where H = magnetizing force (Oersteds) N = number of turns I = peak magnetizing current (A) = mean magnetic path length (cm) Bmax = maximum flux density (Gauss) Erms = voltage across coil (V) A = core cross section area (cm2) f = frequency (Hz) = material permeability</p><p> N = 10 turns (our standard wound turns for M040-066A) A = 0.100cm2 (please see the page 56) = 2.380cm (please see the page 56) LN = 66 x 10</p><p>2 x 10-3 = 6.60(H)</p><p>0.4N2A x 10-2</p><p>Required N = </p><p>0.4NI</p><p>LN = AL x N2</p><p>103</p><p>L1 </p><p> Example) M040066A</p><p>L = = 6.60(H)0.4 x 125 x 102 x 0.100 x 10-2</p><p>2.380</p><p> The relations of Permeability-Flux Density(B)-Magnetizing Force(H)</p><p>H = (Amperes Law)</p><p>(Faradays Law)Ermsx102</p><p>4.44fANBmax = </p><p>BH</p><p> = </p><p>2</p><p>L2 </p><p>2=</p><p>Amperes Law : The law is the magnetic equivalent of Gausss law. It relates the circulating magnetic field in a closed loop to the electric current passing through the loop</p><p>Faradays Law : The law that defines the relationship of the voltage induced across the winding of a core to the flux density within the core</p><p>( )1/2desired L(nH)</p><p>AL(nH / N2)N1 N2</p><p>10 11</p></li><li><p>www.dongbucni.co.kr</p><p>Technical Information</p><p>Core : M040066AApplied current : 3A</p><p>The total core losses are made up of three maincomponents : Hysteresis, eddy current and residual losses.</p><p>1) Inductance Calculation at 0A</p><p> Inductance calculation by Permeability vs. DC bias curves Specification</p><p>L = = 6.60(H) </p><p> N = 10 turns (our standard wound turns for M040-066A) A = 0.100cm2 (please see the page 56) = 2.380cm (please see the page 56) LN = 66 x 10</p><p>2 x 10-3 = 6.60(H)</p><p>Where Rac = effective resistance (Ohm) a = hysteresis loss coefficient c = residual loss coefficient e = eddy current loss coefficient = same as before mentioned L = inductance Bmax = maximum flux density f = frequency</p><p>Eddy current loss</p><p>Residual loss</p><p>Hysteresis loss</p><p>Total loss factor</p><p>0.4 x 125 x 102 x 0.100 x 10-22.380</p><p>RacL</p><p>2) Magnetizing force (H : Oe) is calculated by Ampere law to achieve the roll off</p><p>H = = = 15.8(Oe)0.4 x x N x I</p><p> 0.4 x x 10 x 3</p><p>2.38</p><p>3) When the magnetizing force(H) is 15.8 Oe, yielding 85% of initial permeability. Therefore, the Inductance at 3A is</p><p>L(3A) = 6.6 x 0.85 = 5.6(H)</p><p> Core loss</p><p>= aBmaxf + cf + ef2</p><p>10 11</p></li><li><p>Dongbu CNI</p><p>Dongbu CNI</p><p>Dongbu CNI</p><p>Dongbu CNI</p><p>Dongbu CNI</p><p>Window Area = x</p><p>The Q factor is the ratio of reactance to the effective resistance and is often used as measure of performance. So, the Q factor represents the effect of electrical resistance.</p><p> Q Factor</p><p>Q = </p><p> Where Q = quality factor = 2f (Hz) L = inductance (H) Rdc = DC winding resistance (Ohm) Rac = resistance due to core losses (Ohm) Rd = resistance due to winding dielectric </p><p>losses (Ohm)</p><p> Le = effective mean magnetic path length (cm) Ae = effective core cross section area (cm2 ) Ve = effective core volume (cm3) OD = core outer diameter before coating (cm) ID = core inner diameter before coating (cm) HT = core height before coating (cm)</p><p>LRdc + Rac + Rd = </p><p>ReactanceTotal Resistance</p><p>x HT</p><p>Le = (OD-ID)</p><p> Physical constant of core</p><p>In ODID</p><p>Ve = Le x Ae</p><p> CGS (unit) By To obtain (unit) Factor</p><p> Magnetic Flux Density (B) Gauss (G) 10-4 Tesla (T) 1T=104G</p><p> Magnetizing Force (H) Oersted (Oe) 79.58 Amperes per Meter (A/m) 1A/m=4/103Oe</p><p>Conversion Table</p><p>ID2( )</p><p>2</p><p>Ae = OD-ID</p><p>2</p><p>12 13</p></li><li><p>www.dongbucni.co.kr</p><p>Technical Information</p><p>The increase in surface temperature of a component in free-standing air due to the total power dissipation (both copper and core loss). The following formula has been used to approximate temperature rise:</p><p>Total Power Loss = Copper Loss + Core LossSurface Area means in case of wound core</p><p>Nominal DC Resistance, in ohm/mH, at any given winding factor can be calculated by using the following equations:</p><p> Temperature Rising Calculation</p><p>Temperature Rise(oC) = </p><p> Where /mhwf = mh for chosen winding factor /mhu = unity value, listed for each core size wf = chosen winding factor Kwf = length/turn for chosen wf* Ku = length/turn for unity(100%) wf* </p><p>* see Winding Turn Length on core size pages</p><p>Total Power Loss (milliwatts)Surface Area(cm2)</p><p>/mhuwf</p><p>KwfKu</p><p> Nominal DC Resistance</p><p>/mhwf = x</p><p>The value of Rdc for any given winding factor can be computed as follows:</p><p> Where Rdcwf = Rdc for chosen winding factor Rdcu = unity value, listed for each core size(ohms) wf = chosen winding factor Kwf = length/turn for chosen wf* Ku = length/turn for unity(100%) wf* * see Winding Turn Length on core size pages</p><p>KwfKu</p><p>Rdcwf = Rdcu x wfx</p><p>( )0.833</p><p>12 13</p></li><li><p>Dongbu CNI</p><p>Dongbu CNI</p><p>Dongbu CNI</p><p>Dongbu CNI</p><p>Dongbu CNI</p><p> MPP</p><p>10</p><p> High Flux</p><p> 100 1000 10000</p><p>Frequency (kHz)</p><p>Frequency (kHz)</p><p>Per</p><p>cent</p><p> Per</p><p>mea</p><p>bilit</p><p>y(%</p><p>)P</p><p>erce</p><p>nt P</p><p>erm</p><p>eabi</p><p>lity(</p><p>%)</p><p>10 100 1000 10000</p><p>100</p><p>90</p><p>80</p><p>70</p><p>60</p><p>50</p><p>40</p><p>30</p><p>20</p><p>10</p><p>0</p><p>100</p><p>90</p><p>80</p><p>70</p><p>60</p><p>50</p><p>40</p><p>30</p><p>20</p><p>10</p><p>0</p><p>14 26 60 </p><p>125 </p><p>14</p><p>26 </p><p>60 </p><p>125 </p><p>Permeability vs. Frequency</p><p>14 15</p></li><li><p>www.dongbucni.co.kr</p><p>Technical Information</p><p>Permeability vs. Frequency</p><p> Sendust100</p><p>98</p><p>96</p><p>94</p><p>92</p><p>90</p><p>88</p><p>86</p><p>84</p><p>82</p><p>80</p><p>100</p><p>90</p><p>80</p><p>70</p><p>60</p><p>50</p><p>40</p><p>30</p><p>20</p><p>10</p><p>0</p><p>Frequency (kHz)</p><p>Per</p><p>cent</p><p> Per</p><p>mea</p><p>bilit</p><p>y(%</p><p>)P</p><p>erce</p><p>nt P</p><p>erm</p><p>eabi</p><p>lity(</p><p>%)</p><p> Power Flux</p><p>60 </p><p>90 </p><p>14 26 </p><p>35 60 </p><p>75 </p><p>125 </p><p>90 </p><p>Frequency (kHz)</p><p>10 100 1000 10000</p><p>10 100 1000 10000</p><p>14 15</p></li><li><p>Dongbu CNI</p><p>Dongbu CNI</p><p>Dongbu CNI</p><p>Dongbu CNI</p><p>Dongbu CNI</p><p> MPP</p><p>Normal Magnetizing Curves</p><p>8000</p><p>7000</p><p>6000</p><p>5000</p><p>4000</p><p>3000</p><p>2000</p><p>1000</p><p>0</p><p> High Flux</p><p>Flux</p><p> Den</p><p>sity</p><p> (Gau</p><p>ss)</p><p>1 10 100 1000</p><p>14000</p><p>13000</p><p>12000</p><p>11000</p><p>10000</p><p>9000</p><p>8000</p><p>7000</p><p>6000</p><p>5000</p><p>4000</p><p>3000</p><p>2000</p><p>1000</p><p>0</p><p>125 </p><p>60 </p><p>125</p><p>60 </p><p>26 </p><p>26 </p><p>Flux</p><p> Den</p><p>sity</p><p> (Gau</p><p>ss)</p><p>1 10 100 1000</p><p>Magnetizing Force (Oersteds)</p><p>Magnetizing Force (Oersteds)</p><p>16 17</p></li><li><p>www.dongbucni.co.kr</p><p>Technical Information</p><p> Sendust</p><p>16000</p><p>14000</p><p>12000</p><p>10000</p><p>8000</p><p>6000</p><p>4000</p><p>2000</p><p>01 10 100 1000</p><p>Magnetizing Force (Oersteds)</p><p>Magnetizing Force (Oersteds)</p><p>11000</p><p>10000</p><p>9000</p><p>8000</p><p>7000</p><p>6000</p><p>5000</p><p>4000</p><p>3000</p><p>2000</p><p>1000</p><p>0</p><p>90 </p><p>60 </p><p>Flux</p><p> Den</p><p>sity</p><p> (Gau</p><p>ss)</p><p>Flux</p><p> Den</p><p>sity</p><p> (Gau</p><p>ss)</p><p> Power Flux</p><p>1 10 100 1000</p><p>125 </p><p>90 </p><p>75 </p><p>60 </p><p>26 </p><p>Normal Magnetizing Curves</p><p>16 17</p></li><li><p>Dongbu CNI</p><p>Dongbu CNI</p><p>Dongbu CNI</p><p>Dongbu CNI</p><p>Dongbu CNI</p><p> MPP4</p><p>3</p><p>2</p><p>1</p><p>0</p><p>-110 100 1000 10000</p><p>10 100 1000 10000</p><p>AC Flux Density (Gauss)</p><p>Per</p><p>cent</p><p> Cha</p><p>nge </p><p>of P</p><p>erm</p><p>eabi</p><p>lity </p><p>(%)</p><p>125 </p><p>60</p><p>26</p><p> High Flux30</p><p>25</p><p>20</p><p>15</p><p>10</p><p>5</p><p>0</p><p>-5</p><p>-10</p><p>AC Flux Density (Gauss)</p><p>Per</p><p>cent</p><p> Cha</p><p>nge </p><p>of P</p><p>erm</p><p>eabi</p><p>lity </p><p>(%) 125</p><p>60</p><p>26</p><p>Permeability vs. AC Flux Density</p><p>18 19</p></li><li><p>www.dongbucni.co.kr</p><p>Permeability vs. AC Flux Density</p><p>4</p><p>3</p><p>2</p><p>1</p><p>0</p><p>-1</p><p>4</p><p>3</p><p>2</p><p>1</p><p>0</p><p>-1</p><p>AC Flux Density (Gauss)</p><p>Per</p><p>cent</p><p> Cha</p><p>nge </p><p>of P</p><p>erm</p><p>eabi</p><p>lity </p><p>(%)</p><p>perc</p><p>ent c</p><p>hang</p><p>e of</p><p> per</p><p>mea</p><p>bilit</p><p>y(%</p><p>)</p><p> Sendust</p><p> Power Flux</p><p>AC Flux Density (Gauss)</p><p>125</p><p>90</p><p>75</p><p>60</p><p>26</p><p>60</p><p>Technical Information</p><p>10 100 1000 10000</p><p>10 100 1000 10000</p><p>18 19</p></li><li><p>Dongbu CNI</p><p>Dongbu CNI</p><p>Dongbu CNI</p><p>Dongbu CNI</p><p>Dongbu CNI</p><p> MPP100</p><p>90</p><p>80</p><p>70</p><p>60</p><p>50</p><p>40</p><p>30</p><p>20</p><p>10</p><p>0</p><p>100</p><p>90</p><p>80</p><p>70</p><p>60</p><p>50</p><p>40</p><p>30</p><p>20</p><p>10</p><p>0</p><p>DC Mangnetizing Force (Oe)</p><p>DC Mangnetizing Force (Oe)</p><p>Per</p><p>cent</p><p> Per</p><p>m e</p><p>abili</p><p>ty (%</p><p>)P</p><p>erce</p><p>nt P</p><p>erm</p><p> eab</p><p>ility</p><p> (%)</p><p> High Flux</p><p>125 60 26 14</p><p>125 60 26 14</p><p>1 10 100 1000</p><p>1 10 100 1000</p><p>20 21</p><p>Permeability vs. DC Bias Curves</p></li><li><p>www.dongbucni.co.kr</p><p>Technical Information</p><p> Sendust100</p><p>90</p><p>80</p><p>70</p><p>60</p><p>50</p><p>40</p><p>30</p><p>20</p><p>10</p><p>01 10 100 1000</p><p>1 10 100 1000</p><p>100</p><p>90</p><p>80</p><p>70</p><p>60</p><p>50</p><p>40</p><p>30</p><p>20</p><p>10</p><p>0</p><p>DC Mangnetizing Force (Oe)</p><p>DC Mangnetizing Force (Oe)</p><p>Per</p><p>cent</p><p> Per</p><p>m e</p><p>abili</p><p>ty (%</p><p>)P</p><p>erce</p><p>nt P</p><p>erm</p><p> eab</p><p>ility</p><p> (%)</p><p> Power Flux</p><p>Technical Information125 90 7560 35 26 14</p><p>90 60</p><p>Permeability vs. DC Bias Curves</p><p>20 21</p></li><li><p>Dongbu CNI</p><p>Dongbu CNI</p><p>Dongbu CNI</p><p>Dongbu CNI</p><p>Dongbu CNI</p><p>Factors of Permeability vs. DC Bias Fit Formula</p><p> 14 -3.5204E-05 -1.8222E-08 -3.5714E-05 5.1020E-08</p><p> 26 -4.7041E-05 -2.2758E-09 -4.6154E-05 2.9586E-08</p><p> 60 -8.2917E-05 1.8519E-09 -5.8333E-05 2.7778E-08 </p><p> 125 -7.2890E-05 1.3824E-09 -9.0400E-05 3.2000E-08</p><p> 0 a b c d</p><p> 14 -7.6531E-06 -3.2799E-09 1.4286E-06 5.1020E-09</p><p> 26 -2.4556E-05 -1.7069E-09 1.1538E-05 5.9172E-09</p><p> 60 -2.8972E-05 -4.6296E-10 -2.5000E-05 8.3333E-09 </p><p> 125 -3.4861E-05 3.0720E-10 -3.5200E-05 6.4000E-09</p><p>MPP</p><p>High Flux</p><p>a1</p><p>=c d + +</p><p>b+ + 20 30 20</p><p> 2 0</p><p> 40</p><p> 2</p><p> e ff</p><p> 0 a b c d</p><p>22 23</p></li><li><p>www.dongbucni.co.kr</p><p>a1</p><p>=c d + +</p><p>b+ + 20 30 20</p><p> 2 0</p><p> 40</p><p> 2</p><p> e ff</p><p>Factors of Permeability vs. DC Bias Fit Formula</p><p> 14 -3.6735E-05 -7.2886E-09 -2.1429E-05 3.0612E-08</p><p> 26 -9.1716E-05 2.2758E-09 8.4615E-05 1.4793E-08</p><p> 35 -1.0522E-04 2.3324E-09 4.8571E-05 1.6327E-08 </p><p> 60 -7.4250E-05 1.8519E-09 1.3333E-05 1.3889E-08 </p><p> 75 -9.1058E-05 2.1333E-09 3.4667E-05 1.0667E-08</p><p> 90 -8.2457E-05 1.7833E-09 1.0000E-05 2.4691E-08 </p><p> 125 -9.1155E-05 1.9456E-09 -9.6000E-06 2.5600E-08</p><p> 60 -3.5444E-05 -1.8519E-10 6.6667E-07 8.3333E-09 </p><p> 90 -5.4914E-05 8.2305E-10 -4.4444E-06 8.6420E-09</p><p>Sendust</p><p>Power Flux</p><p>Technical Information</p><p> 0 a b c d</p><p> 0 a b c d</p><p>22 23</p></li><li><p>Dongbu CNI</p><p>Dongbu CNI</p><p>Dongbu CNI</p><p>Dongbu CNI</p><p>Dongbu CNI</p><p>Factors of Percentage Permeability (x100) calculation</p><p> 14 -4.9286E-04 -3.5714E-06 -5.0000E-04 1.0000E-05</p><p> 26 -1.2231E-03 -1.5385E-06 -1.2000E-03 2.0000E-05</p><p> 60 -4.9750E-03 6.6667E-06 -3.5000E-03 1.0000E-04 </p><p> 125 -9.1112E-03 2.1600E-05 -1.1300E-02 5.0000E-04 </p><p> 0 k l m n</p><p> 14 -1.0714E-04 -6.4286E-07 2.0000E-05 1.0000E-06</p><p> 26 -6.3846E-04 -1.1538E-06 3.0000E-04 4.0000E-06</p><p> 60 -1.7383E-03 -1.6667E-06 -1.5000E-03 3.0000E-05 </p><p> 125 -4.3576E-03 4.8000E-06 -4.4000E-03 1.0000E-04 </p><p>MPP</p><p>High Flux</p><p>k l1Ratio </p><p> of Perm . =</p><p>+ + 2</p><p>m n1 + + 2</p><p> 0 k l m n</p><p>24 25</p></li><li><p>www.dongbucni.co.kr</p><p>k l1Ratio </p><p> of Perm . =</p><p>+ + 2</p><p>m n1 + + 2</p><p>Factors of Percentage Permeability (x100) calculation</p><p> 14 -5.1429E+00 -1.4286E-02 -3.0000E-04 6.0000E-06</p><p> 26 -2.3846E+01 1.5385E-02 2.2000E-03 1.0000E-05</p><p> 35 -3.6829E+01 2.8571E-02 1.7000E-03 2.0000E-05 </p><p> 60 -4.4550E+01 6.6667E-02 8.0000E-04 5.0000E-05 </p><p> 75 -6.8293E+01 1.2000E-01 2.6000E-03 6.0000E-05</p><p> 90 -7.4211E+01 1.4444E-01 9.0000E-04 2.0000E-04 </p><p> 125 -1.1394E+02 3.0400E-01 -1.2000E-03 4.0000E-04</p><p> 60 -2.1267E-03 -6.6667E-07 4.0000E-05 3.0000E-05</p><p> 90 -4.9422E-03 6.6667E-06 -4.0000E-04 7.0000E-05 </p><p>Sendust</p><p>Power Flux</p><p>Technical Information</p><p> 0 k l m n</p><p> 0 k l m n</p><p>24 25</p></li><li><p>Dongbu CNI</p><p>Dongbu CNI</p><p>Dongbu CNI</p><p>Dongbu CNI</p><p>Dongbu CNI</p><p>Typical Core Loss of MPP</p><p>MPP 14</p><p>Flux Density (Gauss)</p><p>PL=2.33F1.31B2.19</p><p>10 100 1000 10000</p><p>MPP 26</p><p>200KH</p><p>z100</p><p>KHz</p><p>50KHz 25K</p><p>Hz</p><p>Cor</p><p>e Lo</p><p>ss (m</p><p>W/c</p><p>m3 )</p><p>Flux Density (Gauss)</p><p>10 100 1000 10000</p><p>200KH</p><p>z100</p><p>KHz</p><p>50KHz 25K</p><p>Hz</p><p>Cor</p><p>e Lo</p><p>ss (m</p><p>W/c</p><p>m3 )</p><p>10000</p><p>1000</p><p>100</p><p>10</p><p>1</p><p>0.1</p><p>10000</p><p>1000</p><p>100</p><p>10</p><p>1</p><p>0.1</p><p>PL=C X F</p><p>a X B</p><p>b</p><p> (F : kHz - B : kG)</p><p> Perm. C a b</p><p> 14 2.33 1.31 2.19</p><p> 26 1.39 1.28 1.29</p><p>PL=1.39F1.28B1.29</p><p>26 27</p></li><li><p>www.dongbucni.co.kr</p><p>Flux Density (Gauss)</p><p>10 100 1000 10000</p><p>MPP 60</p><p>MPP 125</p><p>PL=0.64F1.41B2.20</p><p>200KH</p><p>z100</p><p>KHz 50K</p><p>Hz 25KH</p><p>z</p><p>Flux Density (Gauss)</p><p>10000</p><p>1000</p><p>100</p><p>10</p><p>1</p><p>0.110 100 1000 10000</p><p>200KH</p><p>z100</p><p>KHz</p><p>50KHz</p><p>25KHz</p><p>Cor</p><p>e Lo</p><p>ss (m</p><p>W/c</p><p>m3 )</p><p>10000</p><p>1000</p><p>100</p><p>10</p><p>1</p><p>0.1</p><p>Cor</p><p>e Lo</p><p>ss (m</p><p>W/c</p><p>m3 )</p><p>Typical Core Loss of MPP</p><p>PL=C X F</p><p>a X B</p><p>b</p><p> (F : kHz - B : kG)</p><p> Perm. C a b</p><p> 60 0.64 1.41 2.20</p><p> 125 1.02 1.40 2.03</p><p>PL=1.02F1.40B2.03</p><p>Technical Information</p><p>26 27</p></li><li><p>Typical Core Loss 01 High Flux </p><p>Hlgh Flux 14 p. HIDl </p><p>/ '2.~ g OiJ' ~ </p><p>1" </p><p>100 </p><p>'" </p><p>({</p><p>E)</p><p>e</p><p>P l =726fO.95Bul </p><p>1III HlXl </p><p>Flux Density (Ga=) 100 </p><p>0.1 </p><p>'" </p><p>H lgh Flux 26 (JlXJ </p><p> / l &amp; </p><p>1m </p><p>100 </p><p>10 </p><p>(E</p><p>E) $</p><p>g</p><p>PL =1 .38F\37B230 </p><p>1 lXl 1(lXJ </p><p>FI, Oensily (Gauss) </p><p>100 0.1 </p><p>10 </p><p>b a c Po</p></li><li><p>www.dongbucni.co.kr</p><p>Typical Core Loss of High Flux</p><p>PL=C X F</p><p>a X B</p><p>b</p><p> (F : kHz - B : kG)</p><p>Flux Density (Gauss)</p><p>10 100 1000 10000</p><p>HIgh Flux 60</p><p>HIgh Flux 125</p><p>200KH</p><p>z 100KH</p><p>z 50KHz 25K</p><p>Hz</p><p>Flux Density (Gauss)</p><p>10 100 1000 10000</p><p>200KH</p><p>z 100KH</p><p>z50K</p><p>Hz25K</p><p>Hz</p><p>10000</p><p>1000</p><p>100</p><p>10</p><p>1</p><p>0.1</p><p>Cor</p><p>e Lo</p><p>ss (m</p><p>W/c</p><p>m3 )</p><p>10000</p><p>1000</p><p>100</p><p>10</p><p>1</p><p>0.1</p><p>Cor</p><p>e Lo</p><p>ss (m</p><p>W/c</p><p>m3 )</p><p>PL=3.65F1.15B2.16</p><p>PL=1.62F1.32B2.20</p><p>Technical Information</p><p> Perm. C a b</p><p> 60 3.65 1.15 2.16</p><p> 125 1.62 1.32 2.20</p><p>28 29</p></li><li><p>Dongbu CNI</p><p>Dongbu CNI</p><p>Dongbu CNI</p><p>Dongbu CNI</p><p>Dongbu CNI</p><p>Typical Core Loss of Sendust</p><p>Sendust 14, 26</p><p>Flux Density (Gauss)</p><p>200KHz 100</p><p>KHz 50KHz</p><p>25KHz</p><p>Cor</p><p>e Lo</p><p>ss (m</p><p>W/c</p><p>m3 )</p><p>PL=2.27F1.26B2.08</p><p>10 100 1000 10000</p><p>10000</p><p>1000</p><p>100</p><p>10</p><p>1</p><p>0.1</p><p>Flux Density (Gauss)</p><p>10 100 1000 10000</p><p>Sendust 60,75,90,125</p><p>200KH</p><p>z 100KHz 50K</p><p>Hz 25KHz</p><p>10000</p><p>1000</p><p>100</p><p>10</p><p>1</p><p>0.1</p><p>Cor</p><p>e Lo</p><p>ss (m</p><p>W/c</p><p>m3 )</p><p>PL=2.00F1.31B2.15</p><p>PL=C X F</p><p>a X B</p><p>b</p><p> (F : kHz - B : kG)</p><p> Perm. C a b</p><p> 14, 26 2.27 1.26 2.08</p><p> 60,75,90,125 2.00 1.31 2.15</p><p>30 31</p></li><li><p>www.dongbucni.co.kr</p><p>Power Flux 60, 90</p><p>Flux Density (Gauss)</p><p>10000</p><p>1000</p><p>100</p><p>10</p><p>1</p><p>0.110 100 1000 10000</p><p>200KH</p><p>z100</p><p>KHz 50K</p><p>Hz 25KHz</p><p>Cor</p><p>e Lo</p><p>ss (m</p><p>W/c</p><p>m3 )</p><p>PL=4.51F1.25B2.21</p><p>Typical Core Loss of Power Flux</p><p> Perm. C a b</p><p> 60, 90 4.51 1.25 2.21</p><p>Technical Information</p><p>PL=C X F</p><p>a X B</p><p>b</p><p> (F : kHz - B : kG)</p><p>30 31</p></li><li><p>Dongbu CNI</p><p>Dongbu CNI</p><p>Dongbu CNI</p><p>Dongbu CNI</p><p>Dongbu CNI</p><p>Temperature Stability</p><p> MPP</p><p>3.0</p><p>2.0</p><p>1.0</p><p>0.0</p><p>-1.0</p><p>-2.0-30 -20 -10 0 10 20 30 40 50 60 70 80 90 100 110 120 130</p><p>Temperature (oC)</p><p>Per</p><p>cent</p><p> Per</p><p>mea</p><p>bilit</p><p>y (%</p><p>) 125 60</p><p>26 </p><p>14 </p><p>5.0</p><p>4.0</p><p>3.0</p><p>2.0</p><p>1.0</p><p>0.0</p><p>-0.1</p><p>-0.2</p><p>-0.3</p><p>-0.4</p><p>-0.5</p><p>Per</p><p>cent</p><p> Per</p><p>mea</p><p>bilit</p><p>y (%</p><p>)</p><p>60 2614</p><p>125 </p><p> High Flux</p><p>-30 -20 -10 0 10 20 30 40 50 60 70 80 90 100 110 120 130</p><p>Temperature (oC)</p><p>32 33</p></li><li><p>www.dongbucni.co.kr</p><p>Per</p><p>cent</p><p> Per</p><p>mea</p><p>bilit</p><p>y (%</p><p>)</p><p>Temperature Stability</p><p> Sendust</p><p>125</p><p>90</p><p>75</p><p>90</p><p>60</p><p>Per</p><p>cent</p><p> Per</p><p>mea</p><p>bilit</p><p>y (%</p><p>)</p><p>14,2660</p><p>2.0</p><p>1.0</p><p>0.0</p><p>-1.0</p><p>-2.0</p><p>-3.0</p><p>-4.0</p><p>-5.0</p><p>-6.0</p><p>-7.0</p><p>5.0</p><p>4.0</p><p>3.0</p><p>2.0</p><p>1.0</p><p>0.0</p><p>-0.1</p><p>-0.2</p><p>-0.3</p><p>-0.4</p><p>-0.5</p><p> Power Flux</p><p>-30 -20 -10 0 10 20 30 40 50 60 70 80 90 100 110 120 130</p><p>Temperature (oC)</p><p>-30 -20 -10 0 10 20 30 40 50 60 70 80 90 100 110 120 130</p><p>Temperature (oC)</p><p>Technical Information</p><p>32 33</p></li><li><p>Dongbu CNI</p><p>Dongbu CNI</p><p>Dongbu CNI</p><p>Dongbu CNI</p><p>Dongbu CNI</p><p>Symbol and Units</p><p> Symbol Discription Unit</p><p> Ae effective cross section area of a core cm2</p><p> AL apparent inductance nH/N2</p><p> B magnetic flux density T</p><p> Br remanence flux density T</p><p> Bmax maximum flux density T</p><p> Erms sinusoidal rms voltage across winding V</p><p> H magnetizing force A/m</p><p> Hc coercive force A/m</p><p> Hmax maximum magnetizing force A/m</p><p> e effective magnetic path length cm</p><p> L inductance H</p><p> N number of turns -</p><p>