1A B C1A B C 2A B C2A B C 3A B C3A B C 4A B C4A B C 5A B C5A B C 6A B C6A B C 7A B C7A B C 8A B C8A B C 9A B C9A B C 10 AA B CBC 11 AA B CBC 12 AA B CBC

  • Published on
    25-Dec-2015

  • View
    215

  • Download
    1

Embed Size (px)

Transcript

<ul><li> Slide 1 </li> <li> Slide 2 </li> <li> 1A B C1A B C 2A B C2A B C 3A B C3A B C 4A B C4A B C 5A B C5A B C 6A B C6A B C 7A B C7A B C 8A B C8A B C 9A B C9A B C 10 AA B CBC 11 AA B CBC 12 AA B CBC 13 AA B CBC 14 AA B CBC 15 AA B CBC 16 AA B CBC 17 AA B CBC 18 AA B CBC 19 AA B CBC 20 AA B CBC 21 AA B CBC 22 AA B CBC 23 AA B CBC 24 AA B CBC 25 AA B CBC 26 AA B CBC 27 AA B CBC 28 AA B CBC 29 AA B CBC 30 AA B CBC 31 AA B CBC 32 AA B CBC 33 AA B CBC 34 AA B CBC 35 AA B CBC 36 AA B CBC 37 AA B CBC 38 AA B CBC 39 AA B CBC 40 AA B CBC 41 AA B CBC 42 AA B CBC 43 AA B CBC 44 AA B CBC 45 AA B CBC 46 AA B CBC 47 AA B CBC 48 AA B CBC 49 AA B CBC 50 AA B CBC 51 AA B CBC 52 AA B CBC 53 AA B CBC 54 AA B CBC 55 AA B CBC 56 AA B CBC 57 AA B CBC 58 AA B CBC 59 AA B CBC 60 AA B CBC 61 AA B CBC 62 AA B CBC 63 AA B CBC 64 AA B CBC by Jenny Paden, jenny.paden@fpsmail.org </li> <li> Slide 3 </li> <li> 1A Draw segment AB and ray CD A B C D </li> <li> Slide 4 </li> <li> 1B Name a four coplanar points Points A, B, C, D </li> <li> Slide 5 </li> <li> 1C Name a pair of opposite rays: CB and CD </li> <li> Slide 6 </li> <li> 2A M is the midpoint of, PM = 2x + 5 and MR = 4x 7. Solve for x. x = 6 </li> <li> Slide 7 </li> <li> 2B Solve for x x = 3 3x4x + 8 29 </li> <li> Slide 8 </li> <li> 2C E, F and G represent mile markers along a straight highway. Find EF. E 6x 4 F 3x G 5x + 8 EF = 14 </li> <li> Slide 9 </li> <li> 3A L is in the interior of JKM. Find m JKM if m JKL = 32 and m LKM = 47 o. m JKM = 79 o </li> <li> Slide 10 </li> <li> 3B bisects ABC, m ABD = (4x - 3), and m DBC = (2x + 7). Find m ABD. m ABD = 17 </li> <li> Slide 11 </li> <li> 3C bisects PQR, m PQS = (2y + 1), and m PQR = (y + 12). Find y. y = 10/3 = 3.3 </li> <li> Slide 12 </li> <li> 4A Angles 1 and 2 are called: A. Vertical Angles B. Adjacent Angles C. Linear Pair D. Complementary Angles B. Adjacent Angles 1 2 </li> <li> Slide 13 </li> <li> 4B Angles 1 and 2 are called: A. Vertical Angles B. Adjacent Angles C. Linear Pair D. Complementary Angles A. Vertical Angles 1 2 </li> <li> Slide 14 </li> <li> 4C Angles 1 and 2 are: A. Adjacent B. Linear Pair C. Adjacent and Linear Pair D. Neither C. Adjacent and Linear Pair 1 2 </li> <li> Slide 15 </li> <li> 5A The supplement of a 84 o angle is _____ o 96 o </li> <li> Slide 16 </li> <li> 5B The complement of a 84 o angle is _____ o 6o6o </li> <li> Slide 17 </li> <li> 5C Find the complement of the angle above. 52.8 o 37.2 o </li> <li> Slide 18 </li> <li> 6A Find the perimeter and area of a square with side length of 5 inches Perimeter: 20 inches Area: 25 inches 2 </li> <li> Slide 19 </li> <li> 6B What is the perimeter and area of the triangle above? Perimeter = 32 Area = 36 14 12 6 </li> <li> Slide 20 </li> <li> 6C Find the circumference and area of a circle with a diameter of 10. Round your answer to the nearest tenth. Circumference: 31.4 Area: 78.5 </li> <li> Slide 21 </li> <li> 7A State the Distance Formula </li> <li> Slide 22 </li> <li> 7B Find the distance of (-1, 1) and (-3, -4) </li> <li> Slide 23 </li> <li> 7C Find the length of FG Answer: 5 </li> <li> Slide 24 </li> <li> 8A Find the midpoint of (-4, 1) and (2, 9) (-1, 5) </li> <li> Slide 25 </li> <li> 8B Find the midpoint of (3, 2) and (-1, 4) (1,3) </li> <li> Slide 26 </li> <li> 8C Find the midpoint of (6, -3) and (10, -9) (8, -6) </li> <li> Slide 27 </li> <li> 9A and are called _____ lines: A. Perpendicular B. Parallel C. Skew D. Coplanar Answer: C. Skew </li> <li> Slide 28 </li> <li> 9B BF and FJ are _______. A. Perpendicular B. Parallel C. Skew A. Perpendicular </li> <li> Slide 29 </li> <li> 9C BF and EJ are _______. A. Perpendicular B. Parallel C. Skew B. Parallel </li> <li> Slide 30 </li> <li> 10A 1 and 2 are called _____ angles. A. Alternate Interior B. Corresponding C. Alternate Exterior D. Same Side Interior. B. Corr. 2 1 </li> <li> Slide 31 </li> <li> 10B Find x. x = 132 o 48 x </li> <li> Slide 32 </li> <li> 10C Find the measure of each angle. 1 = 115 o, 2 = 115 o 3 = 148 o, 4 = 148 o </li> <li> Slide 33 </li> <li> 11A Find x. x = 22 </li> <li> Slide 34 </li> <li> 11B Find x. x = 15 4x + 20 6x +10 </li> <li> Slide 35 </li> <li> 11C Find x. x = 5 4x + 20 6x +10 </li> <li> Slide 36 </li> <li> 12A Given line segment XY, what construction is shown: Perpendicular Bisector </li> <li> Slide 37 </li> <li> 12B a)Name the shortest segment from A to CB b)Write an inequality for x. a) AP b) x &gt; 20 </li> <li> Slide 38 </li> <li> 12C a) Name the shortest segment from A to CB b) Write an inequality for x. a) AB b) x &lt; 17 </li> <li> Slide 39 </li> <li> 13A Classify the triangle by its angles AND sides. Acute isocseles </li> <li> Slide 40 </li> <li> 13B Classify the triangle by its angles AND sides. Equilateral and Equiangular (or Acute) </li> <li> Slide 41 </li> <li> 13C Classify the triangle by its angles AND sides. Obtuse Isosceles 120 30 </li> <li> Slide 42 </li> <li> 14A Find y. y = 7 </li> <li> Slide 43 </li> <li> 14B A manufacturer produces musical triangles by bending steal into the shape of an equilateral triangle. How many 3 inch triangles can the manufacturer produce from a 100 inch piece of steel? 11 Triangles </li> <li> Slide 44 </li> <li> 14C Find the length of JL. JL = 44.5 </li> <li> Slide 45 </li> <li> 15A Find x. x = 29 115 36 x </li> <li> Slide 46 </li> <li> 15B Find x. x = 74 47 27 x </li> <li> Slide 47 </li> <li> 15C Find x. x = 22 4x + 10 5x - 60 x + 10 </li> <li> Slide 48 </li> <li> 16A Triangles Find x. 2x + 3 = 47 2x = 44 x = 22 47 o 2x +3 43 o A BC D E F </li> <li> Slide 49 </li> <li> 16B The triangles are congruent. Find x. x = 4 </li> <li> Slide 50 </li> <li> 16C Find y. y = 64 o </li> <li> Slide 51 </li> <li> 17A Name the five Shortcuts to Proving Triangles are Congruent. SSS, SAS, ASA, AAS, and HL </li> <li> Slide 52 </li> <li> 17B Are the triangles congruent? If so, state the congruence theorem to explain why triangles are congruent. Yes, AAS </li> <li> Slide 53 </li> <li> 17C Are the triangles congruent? If so, state the congruence theorem to explain why triangles are congruent. Yes, SSS </li> <li> Slide 54 </li> <li> 18A What does CPCTC stand for? Corresponding Parts of Congruent Triangles are Congruent </li> <li> Slide 55 </li> <li> 18B Yes, CPCTC </li> <li> Slide 56 </li> <li> 18C Given the triangles, is A P? Yes, CPCTC </li> <li> Slide 57 </li> <li> 19A Find x x = 70 o </li> <li> Slide 58 </li> <li> 19B Find x. x = 72 o </li> <li> Slide 59 </li> <li> 19C Find x. x = 14 </li> <li> Slide 60 </li> <li> 20A Which Property of Equality is shown here? 2x + 3 = 10 2x = 7 Subtraction Property of Equality </li> <li> Slide 61 </li> <li> 20B Which Property of Equality is shown here? 2x = 10 x = 5 Division Property of Equality </li> <li> Slide 62 </li> <li> 20C Write a two column Proof for the following Algebra Equation. 3(t 5) = 39 StatementsReasons 1. 3(t-5)=39 1. Given 2. 3t 15 = 39 2. Distributive 3. 3t = 543. Addition Prop. Of Equal. 4. t = 18 4. Division Prop. Of Equal. </li> <li> Slide 63 </li> <li> 21A Identify the property that justifies the following statement. Reflexive Property of Congruence </li> <li> Slide 64 </li> <li> 21B Identify the property that justifies the following statement. Transitive Property of Equality and. So </li> <li> Slide 65 </li> <li> 21C a = b, so b = a Symmetric Property of Equality </li> <li> Slide 66 </li> <li> Given: Prove: Statements Reason 1. 1. Given 2. 2. Reflexive 3. 3. AAS 4. 22A Complete the following proof CPCTC </li> <li> Slide 67 </li> <li> Given: B is the midpoint of Prove: Statements Reasons 1. B is the midpoint of 1. Given 2. 3. 3. Reflexive 4. 4. Given 5. 5. SSS 22B Complete the following proof A B C D Def of Midpoint </li> <li> Slide 68 </li> <li> 22C Type answer here Given: W is the midpnt of, Prove: Statements Reasons 1. W is the midpnt of 1. Given 2. 2. Def of Midpoint 3. 3. Given 4. 4. Reflexive 5. 5. SSS 6. 6. CPCTC Complete the missing statements. </li> <li> Slide 69 </li> <li> 23A Find x and UT x = 6.5, UT = 28.5 </li> <li> Slide 70 </li> <li> 23B Find a and a = 6, = 38 o </li> <li> Slide 71 </li> <li> 23C Fill in the Blank. The Perpendicular Bisector Theorem If a point is on the perpendicular bisector of a segment, then it is __________ from the endpoints of the segment. Equidistant </li> <li> Slide 72 </li> <li> 24A Find GC. 13.4 </li> <li> Slide 73 </li> <li> 24B Find GM. 14.5 </li> <li> Slide 74 </li> <li> 24C Segments QX and RX are angle bisectors. Find the distance from x to PQ 19.2 </li> <li> Slide 75 </li> <li> 25A Fill in the blank. A _____________ of a triangle is a segment whose endpoints are a vertex of the triangle and the midpoint of the opposite side. A.Altitude B.Median C.Angle Bisector D.Perpendicular Bisector Median </li> <li> Slide 76 </li> <li> 25B In LMN, S is the Centroid of the triangle. RL = 21 and SQ =4. Find LS. LS = 14 </li> <li> Slide 77 </li> <li> 25C Z is the Centorid of the triangle. In JKL, ZW = 7, and LX = 8.1. Find KW. KW = 21 1 1 </li> <li> Slide 78 </li> <li> 26A Given that DE is the mid- segment find the length of AC 14 inches A BC D E 7 in. </li> <li> Slide 79 </li> <li> 26B Find 26 o </li> <li> Slide 80 </li> <li> 26C Find the value of n. 2(n + 14) = 3n + 12 2n + 28 = 3n + 12 n = 16 </li> <li> Slide 81 </li> <li> 27A Write the angles in order from smallest to largest. </li> <li> Slide 82 </li> <li> 27B Write the sides in order from shortest to longest. m R = 180 (60 + 72) = 48 PQ, QR, PR </li> <li> Slide 83 </li> <li> 27C Tell whether a triangle can have sides with the given lengths. Explain. 7, 10, 21 No: 7+10 = 17 NOT greater than 21 </li> <li> Slide 84 </li> <li> 28A Compare m BAC and m DAC. m BAC &gt; m DAC </li> <li> Slide 85 </li> <li> 28B Compare EF and FG. m GHF = 180 82 = 98 EF &lt; GF </li> <li> Slide 86 </li> <li> 28C Find the range of values for k. 5k 12 0 k &lt; 10 k &lt; 2.4 </li> <li> Slide 87 </li> <li> 29A Simplify the radical </li> <li> Slide 88 </li> <li> 29B Simplify the radical </li> <li> Slide 89 </li> <li> 29C Simplify the radical </li> <li> Slide 90 </li> <li> 30A Simplify the radical </li> <li> Slide 91 </li> <li> 30B Simplify the radical </li> <li> Slide 92 </li> <li> 30C Simplify the radical </li> <li> Slide 93 </li> <li> 31A Find the value of x. Leave your answer in simplified form. a 2 + b 2 = c 2 2 2 + 6 2 = x 2 4 + 36 = x 2 40 = x 2 </li> <li> Slide 94 </li> <li> 31B Find the value of x. Leave your answer in simplified form. a 2 + b 2 = c 2 5 2 + 12 2 = x 2 25 + 144 = x 2 169 = x 2 13 = x x </li> <li> Slide 95 </li> <li> 31C Find the value of x. Leave your answer in simplified form. a 2 + b 2 = c 2 5 2 + x 2 = 10 2 25 + x 2 = 100 X 2 = 75 10 5 x </li> <li> Slide 96 </li> <li> 32A Tell if the measures can be the side lengths of a triangle. If so, classify the triangle as acute, obtuse, or right. 7, 12, 16 Since a 2 + b 2 &lt; c 2, the triangle is obtuse. 193 &lt; 256 a 2 + b 2 = c 2 ? 12 2 + 7 2 = 16 2 ? 144 + 49 = 256 ? </li> <li> Slide 97 </li> <li> 32B Tell if the measures can be the side lengths of a triangle. If so, classify the triangle as acute, obtuse, or right. 3.8, 4.1, 5.2 Since a 2 + b 2 &gt; c 2, the triangle is acute. 31.25 &gt; 27.04 a 2 + b 2 = c 2 ? 3.8 2 + 4.1 2 = 5.2 2 ? 14.44 + 16.81= 27.04 ? </li> <li> Slide 98 </li> <li> 32C Tell if the measures can be the side lengths of a triangle. If so, classify the triangle as acute, obtuse, or right. 4, 3, 5 Since a 2 + b 2 = c 2, the triangle is right. 25 = 25 a 2 + b 2 = c 2 ? 4 2 + 3 2 = 5 2 ? 16 + 9= 25 ? </li> <li> Slide 99 </li> <li> 33A Find x. </li> <li> Slide 100 </li> <li> 33B Find x Rationalize the denominator. </li> <li> Slide 101 </li> <li> 33C Find the values of x and y. Leave your answer in simplest radical form. Hypotenuse = 2(shorter leg)22 = 2x Divide both sides by 2.11 = x Substitute 11 for x. </li> <li> Slide 102 </li> <li> 34A A polygon with 8 sides is called a(n): a.Pentagon b. Quadrilateral c. Octagon d.Heptagon C. Octagon </li> <li> Slide 103 </li> <li> 34B What is the name of this polygon. Pentagon </li> <li> Slide 104 </li> <li> 34C A polygon with 10 sides is called a _________________. Decagon </li> <li> Slide 105 </li> <li> 35A Find the sum of the interior angle measures of a convex heptagon. (n 2)180 (7 2)180 900 Polygon Sum Thm. A heptagon has 7 sides, so substitute 7 for n. Simplify. </li> <li> Slide 106 </li> <li> 35B Find the measure of each interior angle of a regular decagon. (n 2)180 (10 2)180 = 1440 Polygon Sum Thm. Substitute 10 for n and simplify. The int. s are , so divide by 10. </li> <li> Slide 107 </li> <li> 35C Find the measure of each exterior angle of a regular 20-gon. measure of one ext. = </li> <li> Slide 108 </li> <li> 36A Which is NOT property of all parallelograms a.Two pairs of parallel opposite sides. b.One pair of parallel and congruent opposite sides c. Two pairs of congruent opposite sides d.Four congruent angles D. Four Congruent Angles </li> <li> Slide 109 </li> <li> 36B A quadrilateral with four congruent sides AND four congruent angles is called a(n) _____________. Square </li> <li> Slide 110 </li> <li> 36C If a quadrilateral has one pair of opposite sides are parallel but NO right angles. Which shape could it be? a.Rhombus, square b.Square, trapezoid c.Rectangle, quadrilateral d.Quadrilateral, trapezoid D. Quadrilateral, Trapezoid </li> <li> Slide 111 </li> <li> 37A A parallelogram with 4 congruent sides, but the angles are not congruent is a(n): a.Rhombus b.Rectangle c.Trapezoid d. Square A. Rhombus </li> <li> Slide 112 </li> <li> 37B A parallelogram with 4 congruent sides and 4 congruent angles is a(n): a.Rhombus b.Rectangle c.Trapezoid d. Square D. Square </li> <li> Slide 113 </li> <li> 37C A square might also be called. I.Rectangle II. Rhombus III. Parallelogram a.I and II only c. II and III b.I and III only d. I, II, and III D. I, II, and III </li> <li> Slide 114 </li> <li> 38A In kite ABCD, m DAB = 54, and m CDF = 52. Find m BCD. m BCD + m CBF + m CDF = 180 m BCD + 52 + 52 = 180 m BCD = 76 m BCD + m CBF + m CDF = 180 </li> <li> Slide 115 </li> <li> 38B Find m A. Isos. trap. s base Same-Side Int. s Thm. Substitute 100 for m C. Subtract 100 from both sides. Def. of s Substitute 80 for m B m C + m B = 180 100 + m B = 180 m B = 80 A B m A = m B m A = 80 </li> <li> Slide 116 </li> <li> 38C JN = 10.6, and NL = 14.8. Find KM. KM = JN + NL KM = 10.6 + 14.8 = 25.4 </li> <li> Slide 117 </li> <li> 39A Sole the proportion. Cross Products Property Simplify. Divide both sides by 56. 7(72) = x(56) 504 = 56x x = 9 </li> <li> Slide 118 </li> <li> 39B Solve the proportion. Cross Products Property Simplify. Divide both sides by 8. 2y(4y) = 9(8) 8y 2 = 72 y 2 = 9 Find the square root of both sides. y = 3 Rewrite as two equations.y = 3 or y = 3 </li> <li> Slide 119 </li> <li> 39C Marta is making a scale drawing of her bedroom. Her rectangular room is 12.5 feet wide and 15 feet long. On the scale drawing, the width of her room is 5 inches. What is the length? Cross Products Property Simplify. Divide both sides by 12.5. 5(15) = x(12.5) 75 = 12.5x x = 6 </li> <li> Slide 120 </li> <li> 40A Determine whether t...</li></ul>