Aircraft Technology Evolution AVIATION HISTORY By Ms. Zuliana Future Challenges

  • Published on

  • View

  • Download

Embed Size (px)


  • Aircraft Technology EvolutionAVIATION HISTORYBy Ms. ZulianaFuture Challenges

  • OutlinesPart 1: Aircraft PressurizationPart 2: Flight InstrumentsPart 3: Aviation GrowthUses of Aircraft1918 1939: World War One Aircraft1939 1945: World War Two Aircraft 1945 1991: The Cold War Part 4: Aviation Future Challenges

  • Part 1Why Aircraft need to be Pressurized?

  • DefinitionCabin Pressurization

    Active pumping of compressed air into an aircraft cabin when flying at high altitude in order to increase the air pressure within the cabin.

  • Why Aircraft needs to be Pressurized?To provide the crew and passengers a safe & comfortable environment.Pressurized means maintains a constant pressure even aircraft flying in high altitude.At higher altitude (> 3000m), the outside atmospheric pressure is very low.

  • Risks of unpressurized aircraftHypoxia: Lacks of oxygenCrew/passengers can loss their consciousness.Altitude sickness: Increase in the blood pHCrew/passengers may experience fatigue, nausea, headaches & sleeplessness.Decompression sickness: Bubbles in the bloodstreamCrew/passengers may feel tiredness, forgetfulness and can lead to strokeBarotrauma: Gases trapped within the bodies (middle ear)Crew/passengers may suffer critical pain

  • How cabin is pressurized?The design of an airtight fuselage (air cant pass through) .A source of compressed air (from a gas turbine engine)Environmental Control System.Valve controls at rear of fuselage: All exhaust air is dumped to atmosphere.Pilot can change cabin pressure through this valve.

  • Part 2:Aircraft Flight Instruments

  • DefinitionFlight Instruments The instruments that used for displaying/ controlling the attitude (orientation) of the aircraft during flight.Examples: altitude, airspeed, magnetic direction/heading

  • DefinitionSince the instrumentation and equipment of aircraft mostly use the electronic circuit/part, they are called Avionics The shorthand for Aeronautical or Aviation Electronics

  • The needs of flight instrumentsFor safety and reliable operation

    The first aircraft instruments is fuel & oil pressure instruments To warn of engine trouble so that the aircraft could be landed before engine failed).

    As aircraft could fly over considerable distances weather became a problem. Instrument systems were developed to fly through bad weather conditions. Speed, distance, altitude, attitude, direction, temperature and pressure are measured and the measurements are displayed on display panel in the cockpit

  • Aircraft Instrument Panel of Cessna

  • Aircraft Instrument Panel of Boeing 737-400

  • Six Basic InstrumentsAirspeed IndicatorAttitude IndicatorAltitude IndicatorTurn IndicatorHeading IndicatorVertical Speed Indicator

  • 1.Airspeed IndicatorTo shows the aircraft's speed relative to the surrounding air. The indicated airspeed must be corrected for air density (which varies with altitude, temperature and humidity) in order to obtain the true airspeed, and for wind conditions in order to obtain the speed over the ground.

  • 2. Attitude IndicatorTo show the aircraft's attitude relative to the horizon. From this the pilot can tell whether the wings are leve or notl and if the aircraft nose is pointing above or below the horizon. This is a primary instrument for instrument flight and is also useful in conditions of poor visibility.

  • 3. AltimeterTo indicate the vertical distance (height) of the airplane above ground level.Drum and single pointer Altimeter Indicator

    Digital Altimeter Indicator

  • 3. AltimeterThere are two kinds of the altimeter used on an aircraft: the barometric altimeter the radar/ radio altimeter.

    Barometric AltimeterUses the atmosphere characteristic air pressure decreases with the increasing altitude.

    Radar/Radio AltimeterUses the sound/electro magnetic wave to measure the vertical distance of the airplane

  • 4. Heading IndicatorTo displays aircraft heading with respect to geographical north.5. Turn IndicatorTo display direction of turn and rate of turn : ex. direction of roll while the aircraft is rolling.6.Vertical Speed IndicatorTo display the vertical speed of the aircraft (rate of climb or descent in feet per minute, meters per second or knots)This instrument senses changing air pressure.

  • Magnetic CompassThe compass shows the aircraft's heading relative to magnetic north. For purposes of navigation it may be necessary to correct the direction indicated (which points to a magnetic pole) in order to obtain direction of true north or south (which points to the earth's axis of rotation).

  • Flight Deck of Modern AircraftB 777 Flight DeckA 320 Flight Deck

  • Glass Cockpit History1970: NASA conducted research on flight instruments displays 1982: The success of the NASA-led glass cockpit work is reflected in the total acceptance of electronic flight displays in Boeing 767.By the end of the 1990s, LCD display panels were increasingly favored among aircraft manufacturers because of their efficiency, reliability and legibility. Nowadays, Modern aircraft such as the Boeing 777, Boeing 787, and Boeing 747-400, Boeing 767-400ER, Airbus A320 family (enhanced version), Airbus A330, Airbus A340 , Airbus A380 and Airbus A350 are fitted with glass cockpits consisting of liquid crystal display (LCD) units

  • Glass Cockpit in Airbus A380

  • Glass Cockpit ComponentsElectronic Flight Instrument System (EFIS):Displays all information regarding the aircrafts situation, position and progress.Comprising left- and right-side primary flight display (PFD) and navigation display screensEFIS primarily covers horizontal and vertical position, but also indicates time and speed. EICAS (Engine Indications and Crew Alerting System) or ECAM (Electronic Centralized Aircraft Monitor) Comprising over-and-under center display screens, shows the aircrafts systems conditions and engines performance.

  • Part 3Aviation Growth

  • Uses of aircraftMilitary aircraftFighters and bombers (shooting, combat)Search and rescue, reconnaissance (spying), observation transport, and tanker aircraft among others.

    Commercial aircraftScheduled and charter airline flights, carrying both passengers and cargo. The larger passenger-carrying types are often referred to as airliners, the largest of which are wide-body aircraft. Some of the smaller types are also used in general aviation, and some of the larger types are used as VIP aircraft.

  • Uses of aircraftGeneral aviationBusiness jets , trainers, aerobatic types, racers, gliders, warbirds, firefighters, medical transports, and cargo transports.

    Private aviation Light passenger, business, or recreational types, and are usually owned or rented by the pilot. The same types may also be used for a wide range of commercial tasks, such as flight training, pipeline surveying, passenger and freight transport, policing, crop dusting, and medical evacuations.

    Experimental aircraftExperimental aircraft are one-off specials, built to explore some aspect of aircraft design and with no other useful purpose. The Bell X-1 rocket plane, which first broke the sound barrier in level flight, is a famous example.

  • World War One (WW1) Aircrafts (1919-1938) Before WW1, the 1st country to use planes for military purposes was Bulgaria, whose planes attacked the Ottoman positions during the First Balkan War 1912-1913.During WW 1 (1919-1938): Several pilots became famous for their air to air combats, the most well-known is Red Baron, who shot down 80 planes in air to air combat with several different planes.Fokker Dr.I replica at the ILA 2006, the "Red Baron" triplane

  • Years between WWI and WWIILarge advancement in aircraft technology. Wood and canvas converts to aluminium. Engine development :In-line water cooled gasoline engines convert to rotary air cooled engines (increase propulsive power).In the 1930s jet engine began.After WWI, experienced fighter pilots were eager to show off their new skills. Many American pilots flying into small towns across the country and showing off their flying abilities, as well as taking paying passengers for rides. Air shows sprang up around the country, with air races and acrobatic stunts.

  • World War Two (WW2) (1939-1945) AircraftsWorld War II: Drastic increase of aircraft development and production. All countries involved in the war stepped up production and development of aircraft based on weapon delivery systems (Bombers, Fighters, Reconnaissance, Transports, Trainers, Communication)

  • World War Two (WW2) Aircrafts (1939-1945) Focke-Wulf Fw 190A Supermarine Spitfire was a typical World War II fighter.

  • The Cold War (1945 1991)Most ex-military aircraft were used in the business of transporting people and goods. Many companies existed, with routes that criss-crossed North America, Europe and other parts of the world. Heavy and super-heavy bomber airframes (e.g., B-29, Lancaster, DC-3) easily converted into commercial aircraftBy 1952, the British state airline introduced into service the first jet airliner, the De Havilland Comet (the plane suffered a series of highly public failures)Other jet airliner designs Boeing 707 -comfortable, higher safety and meet passenger expectations.In October of 1947, Chuck Yeager took the rocket powered Bell X-1 past the speed of sound (1st controlled, level flight to cross the sound barrier).

  • The Cold War (1945 1991)Further barriers of distance were eliminated in 1948 and 1952 as the first jet crossing of the Atlantic occurred and the first nonstop flight to Australia occurred. In 1967, the X-15 set the air speed record for an airplane at 4,534 mph or Mach 6.1 (7,297 km/h). 1969, Boeing came out with its vision for the future of air travel (Boeing 747). This plane is still one of the largest aircraft ever to fly, and it carries millions of passengers each year. Commercial aviation progressed even further in 1976 as British Airways provide supersonic service across the Atlantic (Concorde). A few years earlier the SR-71 Blackbird had set the record for crossing the Atlantic in under 2 hours. Lockheed SR71 BlackbirdFastest in 1989 Now retired

  • Part 4Assignment Tips

  • ASSIGNMENT QUESTION FOR AVIATION HISTORYAviation has progressed so fast since the Wright Brothers first flew in 1902. Airline aircrafts have become faster and more economical to operate; and from single aisle to wide cabin and from canvas to composite and from subsonic to supersonic and single to double deck and from mechanical instruments to glass cockpit etc. Explain what are the future challenges that the civil aviation would face.

    All assignments must have font 12, not be more than 15 pages at 1.5 line spacing. Provide table of content and bibliography at the end of the end of the assignments together with the declaration format. No plagiarism, therefore those with duplicated assignments will be penalised. Deadline: 15 October 2009 (Thursday) at 5.30pm. Delay penalty: one mark each day.


  • Challenges to Civil Aviation

  • World Civil AviationGrowing at a fast rate.Countries like India, China and Middle East are expanding their civil aviationGlobalization has made the world smaller due the increase presence of aviation.People are moving across boarders a very fast mode. Many nations will liberalize the aviation industry meaning any airlines can enter their countries

  • Future ChallengesCompetition Environmental: PollutionEconomical: Fuel price problem SafetyTrained staffAirways congestion

  • Challenges Very Intense CompetitionWithin a nationLike Air Asia and MASWithin a regionLike MAS, SIA and Cathay Pacific Price war reducing the industry value and companies profitsAirlines may go bankrupt and close down

  • Challenges Fuel PriceWorld wide oil is getting depleted by the daysDemand of oil increases by high rate due to increase in other industries and civil aviation.Costs of searching of oils have gone up especially in deep seas.Due geopolitical situation (like wars) oil price may fluctuate as high a $140 per barrel (2008)Aircraft only uses oil to generate energy. It has to alternative sources.When this happens most airlines suffer losses to increase in fuel costs.

  • Challenges - PollutionMore and more nations are getting pollution consciousThe people insist on noise and warm ozone free area.Aircraft manufacturers have problems in meeting these requirements especially with noise free.When people opinion gets stronger than the political masters there will be a curtailment (reduce in quantity) of civil aviation movements.

  • Challenges Safety 11 Sept in USA incident has changed the world aviation safety requirementsMore and more safety requirements are implemented preventing people from boarding aircraft freely.More states are imposing more stringent rules that disallow passengers movement like USA restricted on Middle East passengers to USA.More machines and tools need to be developed and purchased to protect aircrafts. All these incur costs

  • Challenges Trained StaffAs airline goes sophisticated so do the staff requirementsMore skilled pilots and engineers are neededThese people since operating on the same types of aircraft are easily attracted to move away with a better salaries.Better incentives need to be given and hence more costs

  • Challenges Airways CongestionMore and more aircraft are flying each day but the airways remain the same.Busy airways requires highly careful ATC and equipment: less accidents will happenMore ATC controls need to be imposed on airlines at approach and departure that will render delays.Delays will increase costs