Bai Tap Nguyen Phan Giam Phan

  • Published on
    12-Aug-2015

  • View
    737

  • Download
    3

Embed Size (px)

DESCRIPTION

Biology

Transcript

<p>BI TP NGUYN PHN GIM PHNCng thc Nguyn Phn- gim phn Cng thc Nguyn Phn Gi x l s t bo m ban u c b lng bi = 2n, k l s ln nguyn phn lin tip 1. Tng s TB con c to thnh = 2k .x 2. S TB mi c to thnh t nguyn liu mi trng = (2k 1) x 3. S TB mi c to thnh hon ton t nguyn liu mi trng =(2k 2) x 4. Tng NST c trong cc TB con = 2n. x. 2k 5. Mi trng ni bo cung cp nguyn liu tng ng vi s NST = 2n.(2k 1) x Cng thc Gim Phn Gi x l s TB m ban u( 2n NST) 1. x t bo sinh dc s khai sau k ln nguyn phn = x. 2k TBSD chn 2. Mi trng ni bo cn cung cp nguyn liu tng ng vi s NST n cho k ln nguyn phn lin tip = x. 2n (2k 1) 3. x. 2k TBSD chn ---- gim phn ----&gt; 4. x. 2k tbo con ( 4. x. 2k t bo con th c 4. x. 2k tinh trng ging c, x. 2k trng ging ci ) - Tng NST trong 4. x. 2k tinh trng = n.4. x. 2k - Tng NST trong . x. 2k trng = n. x. 2k 4. Mi trng ni bo cn cung cp nguyn liu tng ng vi s NST n cho qu trnh gim phn = x. 2n .2k - Tng nguyn liu mi trng cung cp cho x t bo sinh dc s khai sau k ln nguyn phn v gim phn = x. 2n ( 2.2k 1) 5. Gi n l s cp NST tng ng c cu trc khc nhau, r l s cp NST tng dng xy ra trao I cho ti 1 im( r n) * Nu khng xy ra TC : - S loi giao t to ra = 2n - T l mi loi giao t = 1/2n - S loi hp t to ra = 4n * Nu xy ra TC : - S loi giao t to ra = 2n +r - T l mi loi giao t =1/2n +r - S loi hp t to ra ph thuc vo TC xy ra 1 hay 2 bn c , ci</p> <p>BI TP NGUYN PHN GIM PHNCNG THC SINH HC 1- NGUYN PHN V GIM PHN</p> <p>S lng NST n mi cung cp cho nguyn phn. - Nguyn liu cung cp tng ng: (2k 1)2n - k l s t nguyn phn lin tip ca mt t bo, 2n l b NST lng bi ca loi. - Nguyn liu cung cp to nn cc NST n c nguyn liu mi hon ton: (2k 2)2n S lng thoi t v sc c hnh thnh (hoc b ph hu) to ra cc t bo con sau k t nguyn phn: (2k 1) S lng NST n mi trng cung cp cho 2k t bo sinh tinh hoc sinh trng qua gim phn to ra tinh trng hoc trng: 2k.2n S lng thoi t v sc hnh thnh (hoc ph hu) cho 2k t bo sinh dc thc hin gim phn:2k.3 S tinh trng hnh thnh khi kt thc gim phn ca 2k t bo sinh tinh trng: 2k.4 S lng trng hnh thnh khi kt thc gim phn ca 2k t bo sinh trng l: 2k S loi trng (hoc s loi tinh trng) to ra khc nhau v ngun gc NST: 2n (n l s cp NST) S cch sp xp NST k gia I ca gim phn: C 1 cp NST c 1 cch sp xp C 2 cp NST c 2 cch sp xp C 3 cp NST c 4 cch sp xp (9) Vy nu c n cp NST s c 2n/2 cch sp xp NST k gia I. S loi giao t to ra khi c trao i on. - Trng hp 1: loi c n cp NST m mi cp NST c cu trc khc nhau trong c k cp NST m mi cp c trao i on ti mt im vi iu kin n&gt;k: S loi giao t = 2n + k (10) - Trng hp 2: Loi c n cp NST, c Q cp NST m mi cp c 2 trao i on khng xy ra cng lc vi n &gt; Q: S loi giao t = 2n.3Q (11) - Trng hp 3: loi c n cp NST, c m cp NST m mi cp c 2 trao i on khng cng lc v 2 trao i on cng lc: S loi giao t: 2n + 2m (12) S loi giao t thc t c to ra t mt t bo sinh tinh hoc mt t bo sinh trng: - T mt t bo sinh tinh trng: + Khng c trao i on: 2 loi tinh trng trong tng s 2n loi + C trao i on 1 ch trn k cp NST ca loi: c 4 loi tinh trng trong tng s 2n + k loi</p> <p>BI TP NGUYN PHN GIM PHN+C trao i on 2 ch khng cng lc trn Q cp NST ca loi: c 4 loi tinh trng trong tng s nn.3Q + C trao i on 2 ch cng lc v 2 ch khng cng lc: c 4 loi tinh trng trong tng s 2n + 2m - T mt t bo sinh trng: Thc t ch to ra mt loi trng trong tng s loi trng c hnh thnh trong mi trng hp:1/2n, 1/2n+k, 1/23.3Q, n+2m, S lng t bo con n bi c to ra sau gim phn. - t bo sinh tinh v sinh trng, mi t bo sau khi kt thc gim phn to c 4 t bo n bi. Vy nu c 2k t bo bc vo gim phn th ng vt s to ra: 2k x 4 t bo n bi (22) - thc vt mi t bo sinh ht phn, khi kt thc gim phn to ra c 4 t bo n bi, mi t bo ny tip tc nguyn phn 2 ln ch to nn 3 t bo n bi, hnh thnh nn ht phn chn. Vy s lng t bo n bi to ra t 2k t bo thnh ht phn bng: 2k x 4 x 3 = 2k x 12 (23) i vi t bo sinh non cu, mi t bo sau khi kt thc gim phn to ra 4 t bo n bi trong c mt t bo kch thc ln li tip tc nguyn phn lin tip 3 t va to ra 8 t bo con n bi, trong c 1 t bo trng chn. Vy nu c 2k t bo sinh non khi kt thc qu trnh to giao t s to c mt s lng t bo n bi bng: 2k x 3 + 2k x 8 = 2k x 11 (24)</p> <p>BI TP P DNG Bi 1: Mt t bo sinh dc s khai ca rui gim tin hnh nguyn phn lin tip mt s ln to ra s t bo mi th h cui cng c 512 NST trng thi cha nhn i. 1.Hy xc nh s t phn bo ca t bo sinh dc s khai ni trn 2. Cc t bo mi c to thnh ni trn u tr thnh t bo sinh trng a. Khi t bo sinh trng gim phn th ly nguyn liu t mi trng ni bo to ra bao nhiu NST n? b. Qu trnh gim phn trn hon thnh th to ra c bao nhiu trng v tng s NST trong cc t bo trng l bao nhiu? c. Bit hiu sut th tinh ca trng l 25% v mi trng th tinh cn 1 triu tinh trng tham gia Hy xc nh s tinh trng tham gia th tinh cho 25% s trng ni trn.</p> <p>BI TP NGUYN PHN GIM PHN</p> <p>Hng dn 1.Xc nh s t phn bo ca t bo sinh dc s khai rui gim b NST lng bi 2n= 8 Gi k l s ln phn bo ( k nguyn dng, k&gt;0) Theo gi thit, ta c: 2k. 2n = 512 k 2 . 8 =512 k=6 Vy t bo sinh dc s khai ni trn tin hnh 6 t phn bo. 2.a Mi t bo sinh trng c 2n = 8 NST n, trc khi gim phn to trng th u nhn i NST n thnh NST kp tc l to thm 8 NST n t nguyn liu ca mi trng ni bo. M tng s t bo sinh trng c to ra sau 6 t phn bo l 26= 64 t bo Vy cc t bo sinh trng ly nguyn liu t mi trng ni bo to ra s NST n l : 8.64 = 512 NST n. b. Xc nh s NST n trong cc trng to thnh V mi t bo sinh trng ly nguyn liu t mi trng ni bo to ra s NST n l : 64.1 = 64 trng rui gim n=4 NST nn tng s NST trong cc trng to thnh l 64.4 = 256 NST n c. S tinh trng tham gia th tinh Hiu sut th tinh ca trng l 25% nn tng s trng c trc tip th tinh to hp t l: 64.25% = 16 trng Vy s tinh trng tham gia th tinh l : 1.000.000 x 16 = 16.000.000 tinh trng</p> <p>BI TP NGUYN PHN GIM PHNBi 2: Ba hp t ca 1 loi sinh vt, trong mi hp t c 78 NST lc cha nhn i. Cc hp t nguyn phn lin tip to ra cc t bo con. Tng s NST n trong cc t bo con sinh ra t 3 hp t bng 8112. T l s t bo con sinh ra t hp t 1 vi hp t 2 bng 1/4. S t bo con sinh ra t hp t 3 gp 1,6 ln s t bo con sinh ra t hp t 1 v hp t 2. a.Tm s lng t bo con sinh ra t mi hp t b.Tnh s ln nguyn phn lin tip ca mi hp t c. Tnh s lng NST mi trng ni bo cn cung cp cho 3 hp t thc hin cc ln nguyn phn. Hng dn. a. S lng t bo con sinh ra t mi hp t. Theo cc s liu cho trong gi thit ta c s lng t bo con sinh ra t 3 hp t : 8112 : 78 = 104 t bo - S lng t bo con sinh ra t h t 3: (104 :2,6) x 1,6 = 64 t bo - S lng t bo con ca hp t 1v hp t 2 sinh ra : (104: 2,6) x 1= 40 t bo - S lng t bo con ca hp t 1 sinh ra: (40: 5) x 1 = 8 t bo - S lng t bo con ca hp t 2 sinh ra: (40 : 5) x 4 = 32 t bo b. S ln nguyn phn lin tip ca mi hp t - S ln nguyn phn ca hp t 1: 2k =8 k= 3 - S ln nguyn phn ca hp t 2: 2k= 32 k=5 - S ln nguyn phn ca hp t 3: 2k = 64 k= 6 c. S NST mi trng ni bo cung cp cho c 3 hp t thc hin cc ln nguyn phn. - S NST mi trng ni bo cung cp cho mi hp t: + Hp t 1: (23 -1) x 78 = 546 NST + Hp t 2: (25 -1) x 78 = 2418 NST + Hp t 3: (26 -1) x 78 = 4914 NST</p> <p>BI TP NGUYN PHN GIM PHNVy s NST mi trng ni bo cung cp cho c 3 hp t thc hin cc ln nguyn phn : 546 +2418 +4914 = 7878 NST</p> <p>Bi 3: Mt t bo sinh dc s khai qua cc giai on pht trin t vng sinh sn n vng chn i hi mi trng cung cp 240 NST n. S NST n trong 1 giao t c to ra vng chn gp 2 ln s t bo tham gia vo t phn bo cui cng ti vng sinh sn. a. Xc nh b NST 2n ca loi b. Tnh s chromatic v s NST cng trng thi ca mi t bo k gia nguyn phn, k gia gim phn I, k gia gim phn II, k cui gim phn II l bao nhiu? c. Sau khi gim phn cc giao t c ro thnh u tham gia th tinh. Tng s NST trong cc hp t to thnh l 128. Tnh hiu sut th tinh ca giao t ? d. Nu khng c hin tng trao i cho gia cc NSt, khng c t bin th s loi giao t nhiu nht ca loi l bao nhiu? iu kin? Hng dn gii a. Xc nh b NST 2n Gi x l s NST trong b NST lng bi ca loi k l s t nguyn phn ca t bo sinh dc s khai ( x, k nguyn dng, x chn)</p> <p>Theo bi: (2k -1).x + x.2k = 240 (1) k-1 x/ 2 = 2. 2 (2) Thay 2 vo 1 ta c: (x/2 -1 )x +x.x/2 = 240 x2 x - 240 = 0 x =16 , k= 3</p> <p>Vy b NST 2n =16</p> <p>BI TP NGUYN PHN GIM PHNb. S cromatic v s NST cng trng thi - K gia nguyn phn : 32 cromatic, 16 NST kp - K gia gim phn I: 32 cromatic, 16 NST kp - K gia gim phn II: 16 cromatic, 8 NST kp - K gia nguyn phn :0 cromatic, 8 NST n. c. S t bo tham gia gim phn: 23 = 8 S hp t : 128 / 16= 8 Nu t bo sinh dc trong gim phn l t bo sinh dc ci 8 giao t ci u tham gia to hp t. HSTT = 8. 100/ 8 = 100% Nu t bo sinh dc trong gim phn l t bo sinh dc c to 8.4 = 32 giao t ch c 8 giao t tham gia to hp t HSTT = 8 . 100/32 =25% d. S loi giao t ti a: 2n = 28= 256 iu kin : cc NST c cu trc khc nhau</p> <p>-</p> <p>Bi 4: Mt t bo sinh dc s khai qua cc giai on pht trin t vng sinh sn n vng chn i hi mi trng t bo cung cp 3.024 NST n. T l s t bo tham gia vo t phn bo ti vng chn so vi s NST n c trong mt giao t c to l 4/3. Hiu sut th tinh ca cc giao t l 50 % to ra mt s hp t. Bit rng s hp t c to ra t hn s NST n bi ca loi. a. Xc nh b NST 2n ca loi b. S NST n m mi trng cung cp cho mi giai on pht trin ca c t bo sinh dc cho l bao nhiu? c. Xc nh gii tnh ca c th cha t bo ni trn. Bit gim phn bnh thng khng xy ra trao i cho v t bin.</p> <p>BI TP NGUYN PHN GIM PHNHng dn lm bi a. Xc nh b NST 2n ca loi Gi a l s ln nguyn phn t bo sinh dc ti vng sinh sn ( a nguyn dng) NST cung cp cho qu trnh pht trin ca t bo sinh dc : (2a + 1 1) 2n = 3024 S t bo tham gia t phn vo cui cng ti vng chn: 2a Theo bi , ta c: 2a/ n= 4/3 a =5, n= 24 B NST lng bi ca loi l 2n = 48 b. S NST n mi trng cung cp cho giai on sinh sn ca t bo sinh dc : ( 2a 1) 2n = 31 x 48= 1488 NST S NST n mi trng ni bo cung cp cho giai on sinh trng ca t bo sinh dc : 2a x 2n = 32 x 48 =1536 NST c. Gi b l s giao t c to ra t mt t bo sinh dc chn ta c tng s giao t tham gia th tinh l 32xb S h t c to thnh l 32 x b x 50% = 16 x b &lt; 24 Suy ra b =1 Vy hp t c to thnh l c th ci</p> <p>Bi 5 : Mt c th ci ca mt loi c 2 t bo sinh dc s khai tham gia mt s ln nguyn phn bng nhau. k gia ln nguyn phn th 4 ngi ta m c 768 cromatic c trong cc t bo con. Sau khi thc hin nguyn phn cc t bo u tham gia to trng v mi trng cung cp 3072</p> <p>BI TP NGUYN PHN GIM PHNNST n. Trong 75% trng cung cp cho qu trnh sinh sn. hiu sut th tinh l 37,5 % . con c cng c 2 t bo sinh dc s khai tham gia to tinh trng. Hiu sut th tinh l 56,25% a. Xc nh b NST lng bi ca loi ? d on tn loi b. Xc nh s ln nguyn phn ca t bo sinh dc ci ? s hp t c hnh thnh ? c. Xc nh s ln nguyn phn ca t bo sinh dc c s khai ? Hng dn lm bi : a. Xc nh b NST lng bi ca loi k gia nguyn phn ln th 4, s t bo to thnh l 24 = 32 t bo Theo bi ta c : 32. 2n = 768 2n = 24 Loi l la, c chua b. Xc nh s t nguyn phn ca t bo sinh dc ci Gi x l s ln nguyn phn ca t bo sinh dc ci ( x nguyn dng) Theo bi, ta c : 2x .2n = 3072 2x . 24 = 3072 x =6</p> <p>S hp t c to thnh: S trng dng cho sinh sn: 64 x 0.75 = 48 S hp t: 48 x 0.375= 18 hp t c. S tinh trng c sinh ra 18 x 100 /56.25 = 32 S t bo sinh tinh</p> <p>BI TP NGUYN PHN GIM PHN32 : 4 = 8 t bo S ln nguyn phn 2.2x = 8 x = 2</p> <p>Bi 6 Mt loi sinh vt khi gim phn, nu c 3 cp NST u xy ra trao i cho ti mt im s to ra ti a 225 loi giao t. Mt t bo sinh dc s khai ci ca loi ny qua mt s t nguyn phn cn mi trng cung cp 11220 NST n. Cc t bo con sinh ra u tham gia gim phn. Bit hiu sut th tinh ca trng l 25%, ca tinh trung l 3,125 %. . Hy xc nh a. S ln nguyn phn ca t bo sinh dc s ci s khai? b. S hp t c hnh thnh? c. S t bo sinh tinh cn to ra s tinh trng tham gia vo qu trnh th tinh? Hng dn lm bi a. Xc nh s ln nguyn phn ca t bo sinh dc ci B NST ca loi l 2n, ta c 2n + 3= 2 25</p> <p>Vy n =22 2n = 44 Gi x l s ln nguyn phn ca t bo sinh dc ci, ta c : 44( 2x -1) = 11220, x= 8</p> <p>b. S hp t to thnh S t bo sinh giao t ci tham gia gim phn = s giao t ci to ra : 28 = 256 t bo S hp t to thnh 256 x 25% = 64</p> <p>BI TP NGUYN PHN GIM PHNS tinh trng tham gia th tinh : 64 x 100/ 3,125 = 2048 S t bo sinh tinh cn to ra s tinh trng tham gia th tinh 2048 : 4 = 512</p> <p>Bi 6 Quan st t bo 1 loi sinh vt ang k gia ca nguyn phn, ngi ta m c c 44 NST kp. Khi quan st 3 nhm t bo sinh dc ca loi ny vng chn ca c quan sinh sn, ta thy chng ang phn bo cc giai on khc nhau v m c tng cng c 968 NST n v NST kp. S NST kp xp thnh 2 hng ngang trn mt phng xch o cc t bo nhm I gp 2 ln s NST kp phn ly v cc cc ca cc t bo nhm II. S NST n ang phn ly v 2 cc ca cc t bo nhm III l 704. Trong qu trnh phn bo s phn chia t bo cht hon thnh k cui. Hy xc nh: a. B NST lng bi ca loi b. Cc nhm t bo trn ang k no ca qu trnh phn bo c. Xc nh s t bo mi nhm d. Tng s NST n mi trng cuang cp cho qu trnh phn bo 3 nhm t bo trn.</p> <p>Hng dn lm bi a. Theo bi, t bo 1 loi sinh vt ang k gia ca nguyn phn, ngi ta m c c 44 NST kp b NST 2n = 44</p> <p>BI TP NGUYN PHN GIM PHNb. Nhm t bo I: NST kp xp thnh 2 hng trn mt phng xch o k gia ca gim phn II Nhm t bo II: cc NST kp phn ly v 2 cc k sau ca gim phn I Nhm t bo III: cc NST n phn l v 2 cc k sau ca gim phn II c. Gi x,y,z ln lt l s t bo nhm I,II,III Ta c: 2y.2n + y.2n + 704 = 968 3y.2n = 968 -704 y= 2, x =4, x= 8 d. S NST n mi trng cung cp cho qu trnh gim phn ( 4+2+8) . 44 = 616</p> <p>Bi 7 : 1 c th c ca mt loi gia sc, theo di s phn chia ca hai nhm t bo : + Nhm I : gm cc t bo sinh dng + Nhm II : gm cc t bo sinh dc vng chn ca tuyn sinh dc Tng s t bo ca 2 nhm t bo l 16. Cng vi s gim phn to trinh trng ca cac t bo sinh dc, cc t bo ca nhm 1 cng nguyn phn mt s t bng nhau. Khi kt thc phn bo ca 2 nhm th tng s t bo con ca 2 nhm l 104 t bo v mi trng ni bo phi cung cp nguyn liu tng ng vi 4560 NST n cho s phn chia ca 2 nhm t bo ny. a. Xc nh b NST ca loi b. k sau trong ln nguyn phn cui cng ca nhm t bo sinh dng ni trn, mi trng ni bo cung cp tng ng bao nhiu NST n ?</p> <p>Hng dn lm bi</p> <p>BI TP NGUYN PHN GIM PHN</p> <p>a. Xc nh b NST ca loi Gi x l s t bo sinh dng ban u, y l s t bo sinh dc vng chn, k l s ln nguyn phn ca mi t bo sinh dng ( k nguyn dng) Theo bi ta c : x + y = 16 ( 1) x.2k +4y = 104 (2) x.2n.(2k 1) + y.2n. (2k 1) = 4560 (3) T (1) ta c : y = 16. Th vo (2) ta c : x.2k + 4. (16 x) = 104 x. (2k -4) = 40 4x (2k -2 -1) = 5.2 = 10.1 V ( 2k-2 -1) = 10 = 5.2 x = 2 v ( 2k-2 -1) = 5 ( loi) ( 2k-2 -1) = 10 =10.1 x = 10 v ( 2k-2 -1) = 1 k = 3 (nhn) Th k =3 vo (3) ta c 2n =60 b. S NST n k sau trong cc t bo con ca nhm t bo sinh dng ang thc hin ln nguyn phn th 3 l : 10. 60. 2. 33-1 = 4800NST</p> <p>CHC CC EM LM BI THT TT !</p>