Biostatistiques / Statistiques - ?· Biostatistiques / Statistiques - CRDSP - 2011/02 3 psychology.…

  • Published on
    12-Sep-2018

  • View
    212

  • Download
    0

Embed Size (px)

Transcript

<ul><li><p> Biostatistiques / Statistiques - CRDSP - 2011/02 1 </p><p>Biostatistiques / Statistiques 2011/02 Centre Rgional de Documentation en Sant Publique - CRDSP Tl : 05 61 25 98 70 Fax : 05 62 26 42 40 mail : n.bel@orsmip.fr Facult de Mdecine, 37 alles Jules Guesde, 31073 Toulouse cedex </p><p>2009 Causality : models, reasoning and inference. Ouvrage Causalit : modles, raisonnement et infrence. PEARL (J.). 2009. New York : Cambridge University Press. 364p. Written by one of the pre-eminent researchers in the field, this book provides a comprehensive exposition of modern analysis of causation. It shows how causality has grown from a nebulous concept into a mathematical theory with significant applications in the fields of statistics, artificial intelligence, philosophy, cognitive science, and the health and social sciences. Pearl presents a unified account of the probabilistic, manipulative, counterfactual and structural approaches to causation, and devises simple mathematical tools for analyzing the relationships between causal connections, statistical associations, actions and observations. The book will open the way for including causal analysis in the standard curriculum of statistics, artifical intelligence, business, epidemiology, social science and economics. Students in these areas will find natural models, simple identification procedures, and precise mathematical definitions of causal concepts that traditional texts have tended to evade or make unduly complicated. This book will be of interest to professionals and students in a wide variety of fields. Anyone who wishes to elucidate meaningful relationships from data, predict effects of actions and policies, assess explanations of reported events, or form theories of causal understanding and causal speech will find this book stimulating and invaluable. (4me couv.) STAT63 Common errors in statistics (and how to avoid them). Ouvrage Erreurs courantes en statistique : (et comment les viter). GOOD (I.), HARDIN (J.W.). 2009. Denvers: Wiley. 84p. Now in a second edition, the highly readable Common Errors in Statistics (and How to Avoid Them) lays a mathematically rigorous and readily accessible foundation for understanding statistical procedures, problems, and solutions. This handy field guide analyzes common mistakes, debunks popular myths, and helps readers to choose the best and most effective statistical technique for each of their tasks. Written for both the newly minted academic and the professional who uses statistics in their work, the book covers creating a research plan, formulating a hypothesis, specifying sample size, checking assumptions, interpreting p-values and confidence intervals, building a model, data mining, Bayes' Theorem, the bootstrap, and many other topics. The Second Edition has been extensively revised to include: Additional charts and graphs; Two new chapters, Interpreting reports and which regression method? ; New sections on practical versus statistical significance and no uniqueness in multivariate regression; Added material from the authors' online courses at statistics.com; new material on unbalanced designs, report interpretation, and alternative modelling methods. (4me couv.) STAT60 Biostatistique. Ouvrage BEUSCART (R.) / dir., BENICHOU (J.), ROY (P.), QUANTIN (C.), VALLERON (A.J.) / prf. Collge National des Enseignants des Facults de Mdecine. Paris. FRA / collab.. 2009. Paris : Omniscience. 400p. Ce manuel est le fruit de l'exprience pdagogique de trente-sept enseignants du premier cycle des professions de sant. Structur selon des exigences trs strictes en treize chapitres refltant fidlement la ralit de l'enseignement mdical de premire anne, il contient tous les lments ncessaires une bonne comprhension des mthodes biostatistiques de base par les futurs mdecins, pharmaciens, sages-femmes, kinsithrapeutes et autres professionnels de sant. Il s'appuie sur un texte concis, sur plus de 100 illustrations et prs de 170 exemples et encadrs pdagogiques, qui proposent en permanence, au fil des pages, un lien direct avec la ralit du futur praticien. Plus de 120 QCM, rdigs dans l'esprit du concours de premire anne, permettent au lecteur de s'entraner et d'valuer sa comprhension du cours. Toutes les rponses ces questions et des tests interactifs sont disponibles l'adresse. (4me de couv.) STAT58 </p></li><li><p> Biostatistiques / Statistiques - CRDSP - 2011/02 2 </p><p> Essais cliniques : thories, pratique et critique. Ouvrage BOUVENOT (G.), VRAY (M.). 2009. Paris : Flammarion Mdecin-Sciences. 462p. Cet ouvrage a pour but principal de permettre tout tudiant ou professionnel de sant de s'initier la thorie, la pratique et l'tude critique des essais cliniques. L'essai clinique est maintenant entr en mdecine praticienne. D'o l'intrt de mettre la disposition des cliniciens, comme des chercheurs, dj ou pas encore initis la mthodologie des essais, un outil pour acqurir des connaissances pratiques, en faisant appel des exemples concrets, mais sans concession quant la rigueur du raisonnement. Les auteurs tudient ainsi successivement le dveloppement d'un mdicament, les protocoles d'essai, la qualit des critres de jugement, l'valuation de l'efficacit d'une thrapeutique en situation relle, les essais d'quivalence, l'analyse et le monitorage d'un essai, la lecture critique de la publication d'un essai clinique, les problmes thiques poss par l'exprimentation humaine des mdicaments, le service mdical rendu, puis, la seconde partie du livre offre au lecteur de trs nombreux exercices thmatiques tandis que dans la troisime et dernire partie, les auteurs ont rdig des problmes avec leurs corrigs dtaills. (4me couv.) STAT17 </p><p>2008 Stata par la pratique : statistiques, graphiques et lments de programmation. Ouvrage CAHUZAC (E.), BONTEMPS (C.). 2008. Lakeway Drive: Stat press. 254p. S'appuyant sur des exemples clairs crits dans un langage simple, cet ouvrage guide l'utilisateur au travers des diffrentes fonctionnalits de Stata 10. L'ensemble des outils ncessaires un travail sur donnes est abord : exploration des donnes, statistiques descriptives, modlisation, infrence, tests, graphiques, ainsi que les sorties pour publication. En outre, l'ouvrage inclut galement une introduction la programmation et propose des extraits de code utiles pour rsoudre les problmes frquemment rencontrs par les utilisateurs. Il contient le matriel essentiel pour transformer le dbutant en expert, la clart de l'ouvrage rendant ce processus particulirement rapide. L'ouvrage propose un apprentissage de Stata par des approches varies. Les exemples proposs sont principalement tirs de l'conomie et des sciences sociales, mais sont illustratifs pour tout lecteur intress par une application statistique, quelle que soit sa spcialit. STAT56 Multilevel and longitudinal modeling using stata. Ouvrage Modlisation longitudinale et multiniveau avec Stata. RABE-HESKETH (S.), SKRONDAL (A.). 2008. Texas : Stata Press. 562p. 2nd edition. Modlisation multiniveaux et longitudinales en utilisant Stata, Second Edition, par Sophia Rabe-Hesketh et Anders Skrondal, porte plus prcisment sur le traitement de Stata de modles mixtes linaires gnraliss, galement connu sous le nom de modles multiniveaux ou hirarchiques. Cette deuxime dition intgre trois nouveaux chapitres: un chapitre sur la rgression linaire standard, un chapitre sur l'analyse discrte de survie temps, et un chapitre sur les donnes longitudinales et de panneau contenant une discussion largie de l'alatoire des coefficients et des modles de courbe de croissance. Les auteurs ont actualis cette dition pour Stata 10, ont ajout de nouveaux exemples et des d'exercices. En rsum, ce livre est le plus complet, up-to-date de la reprsentation de la capacit de Stata pour quiper les modles linaires gnraliss mixtes. Les auteurs fournissent une introduction idale pour les utilisateurs de Stata qui souhaitent en apprendre davantage sur ces donnes puissant outil d'analyse. (extrait 4me de couv.) STAT61 Introduction to statistical mediation analysis. Ouvrage Introduction la mdiation de l'analyse statistique. MACKINNON (D.P.). 2008. New York : Erlbaum Psych Press Collection Multivariate applications series. 477p. This volume introduces the statistical, methodological, and conceptual aspects of mediation analysis. Applications from health, social, and developmental psychology, sociology, communication, exercise science, and epidemiology are emphasized throughout. Single-mediator, multilevel, and longitudinal models are reviewed. The author's goal is to help the reader apply mediation analysis to their own data and understand its limitations. Each chapter features an overview, numerous worked examples, a summary, and exercises (with answers to the odd numbered questions). The accompanying CD contains outputs described in the book from SAS, SPSS, LISREL, EQS, MPLUS, and CALIS, and a program to simulate the model. The notation used is consistent with existing literature on mediation in </p></li><li><p> Biostatistiques / Statistiques - CRDSP - 2011/02 3 </p><p>psychology. The book opens with a review of the types of research questions the mediation model addresses. Part II describes the estimation of mediation effects including assumptions, statistical tests, and the construction of confidence limits. Advanced models including mediation in path analysis, longitudinal models, multilevel data, categorical variables, and mediation in the context of moderation are then described. The book closes with a discussion of the limits of mediation analysis, additional approaches to identifying mediating variables, and future directions. (4e couv.) STAT62 Mediation analysis. Ouvrage Analyse de mediation. IACOBUCCI (D.). 2008. London:Sage. Collection Quantitative applications in the Social Siences. 82p. This book covers mediation analysis-the examination of whether an effect of one variable on another is direct or indirect or both. Author Dawn Iacobucci offers thorough coverage of introductory and advanced material as well as conceptual and statistical information. The book begins by introducing arguments of causality, and proceeds to examine current options for analyzing data patterns purported to exhibit meditational structures. Lacobucci shows direct and indirect paths via causal paths, regression, and structural equations models. She also grounds readers in a popular structural equations modeling approach so they can implement the statistical methods discussed in testing for evidence of mediation in a variety of empirical contexts. (4e couv.) STAT64 </p><p>2007 Biostatistics. A guide to design, analysis, and discovery. Ouvrage Biostatistiques. Concept, analyse, dcouverte. FORTHOFER (R. N.), SUL LEE (E.), HERNANDEZ (M.). 2007. Editions Elsevier Inc. 502p. This stand-alone self-teaching guide on biostatistics focuses on the proper use and interpretation of statistical methods. Readers, even those uncomfortable with mathematics, should find this book to be user friendly. Instead of highlighting derivations of formulas, the authors provide rationales for the formulas. The authors emphasize the vital role of experimental and sample survey designs and the importance of randomization. Realizing that more and more of the sample data available today come from complex sample survey designs, the authors also introduce appropriate methods for the analysis of these data. A companion website has been developed to demonstrate the different applications of computer packages for performing the various analyses presented in this text. Real data are used extensively in examples and exercices. STAT53 Missing data in clinical study. Ouvrage Donnes manquantes dans les tudes cliniques. MOLENBERGHS (G.), KENWARD (M.G.). 2007. Chichester: Wiley. 504p. "Missing Data in Clinical Studies" provides a comprehensive account of the problems arising when data from clinical and related studies are incomplete, and presents the reader with approaches to effectively address them. The text provides a critique of conventional and simple methods before moving on to discuss more advanced approaches. The authors focus on practical and modeling concepts, providing an extensive set of case studies to illustrate the problems described. Provides a practical guide to the analysis of clinical trials and related studies with missing data ; Examines the problems caused by missing data, enabling a complete understanding of how to overcome them ; Presents conventional, simple methods to tackle these problems, before addressing more advanced approaches, including sensitivity analysis, and the MAR missingness mechanism ; Illustrated throughout with real-life case studies and worked examples from clinical trials ; Details the use and implementation of the necessary statistical software, primarily SAS. "Missing Data in Clinical Studies" has been developed through a series of courses and lectures. Its practical approach will appeal to applied statisticians and biomedical researchers, in particular those in the biopharmaceutical industry, medical and public health organisations. Graduate students of biostatistics will also find much of benefit. (4me de couv.) STAT57 2ex. </p><p> 2006 Applied multilevel analysis. Practical guide to biostatistics and epidemiology. Ouvrage Analyse multiniveaux appliqu. Guide pratique de biostatistiques et dpidmiologie. </p></li><li><p> Biostatistiques / Statistiques - CRDSP - 2011/02 4 </p><p>TWISK (J. W.R.). 2006. London : Cambridge University Press. 184p. This is a practical introduction to multilevel analysis suitable for all those doing research. Most books on multilevel analysis are written by statisticians, and they focus on the mathematical background. These books are difficult for non-mathematical researchers. In contrast, this volume provides an accessible account on the application of multilevel analysis in research. It addresses the practical issues that confront those undertaking research and wanting to find the correct answers to research questions. This book is written for non-mathematical researchers and it explains when and how to use multilevel analysis. Many worked examples, with computer output, are given to illustrate and explain this subject. Datasets of the examples are available on the internet, so the reader can reanalyse the data. This approach will help to bridge the conceptual and communication gap that exists between those undertaking research and statisticians. (4me couv.) STAT52 Statistical monitoring of clinical trials. Fundamentals for investigators. Ouvrage Contrle statistique des essais cliniques. Principes fondamentaux pour les enquteurs. MOYE (L.A.). 20...</p></li></ul>