Defense PhD Bouvet

  • Published on
    24-Jun-2015

  • View
    126

  • Download
    2

Embed Size (px)

Transcript

<p>Iterative receivers for multi-antenna systemsThse prsente devant lINSA de Rennes en vue de lobtention du doctorat dlectronique</p> <p>Pierre-Jean BOUVETLe 13 dcembre 2005</p> <p>France Telecom Division Recherche et Dveloppement</p> <p>08/10/10</p> <p>Foreword</p> <p>Forewords s sR&amp;D Unit</p> <p>QBroadband Wireless Acces / Innovative Radio Interface (RESA/BWA/IRI)Supervisor</p> <p>QMaryline HELARD, R&amp;D engineer HDR at France Telecom R&amp;D divisionContext</p> <p>QInternal project: SYCOMORE (research on digital communications) QEuropean project: IST 4-MORE (4G demonstrator based on MIMO and MCCDMA techniques)</p> <p>2</p> <p>Outline</p> <p>OutlineI. II. III. V.Introduction Multi-antenna techniques Generic iterative receiver</p> <p>IV. Optimal space-time codingApplication to MC-CDMA</p> <p>VI. Conclusion</p> <p>3</p> <p>Introductio nContext</p> <p>MIMO techniquesMIMO transmission</p> <p>Generic iterative receiverObjectives</p> <p>Optimal spacetime coding</p> <p>Application to MC-CDMA</p> <p>Conclusion</p> <p>Part I: Introduction</p> <p>4</p> <p>Introductio nContext</p> <p>MIMO techniquesMIMO transmission</p> <p>Generic iterative receiverObjectives</p> <p>Optimal spacetime coding</p> <p>Application to MC-CDMA</p> <p>Conclusion</p> <p>ContextsDigital wireless communications</p> <p>QHigh spectral efficiency QRobustnessRadio-mobile application</p> <p>s</p> <p>QMulti-path propagation Time and frequency selective channel QMobility QMulti-user access</p> <p>5</p> <p>Introductio nContext</p> <p>MIMO techniquesMIMO transmission</p> <p>Generic iterative receiverObjectives</p> <p>Optimal spacetime coding</p> <p>Application to MC-CDMA</p> <p>Conclusion</p> <p>Multi-antenna (MIMO) transmissionssPrinciple</p> <p>QMulti-antenna at transmitter and receiver</p> <p>s</p> <p>MIMO capacity [Telatar 95]</p> <p>: covariance of : rank of : singular valuesSISO capacity</p> <p>of6</p> <p>Introductio nContext</p> <p>MIMO techniquesMIMO transmission</p> <p>Generic iterative receiverObjectives</p> <p>Optimal spacetime coding</p> <p>Application to MC-CDMA</p> <p>Conclusion</p> <p>Multi-antenna (MIMO) transmissionssMotivations</p> <p>QSpectral efficiency gain QPerformance gainSpatial diversity gains Antenna array gains</p> <p>Capacity gain linear in min(Nt, Nr)</p> <p>s</p> <p>Limits</p> <p>QInterference termsCo Antenna Interference (CAI)</p> <p>QSpatial correlationAntennas must be sufficiently spaced Rich scattering environment required</p> <p>QOptimal MIMO capacity exploitationComplex algorithm not well suited for practical implementation Lack of generic schemes</p> <p>7</p> <p>Introductio nContext</p> <p>MIMO techniquesMIMO transmission</p> <p>Generic iterative receiverObjectives</p> <p>Optimal spacetime coding</p> <p>Application to MC-CDMA</p> <p>Conclusion</p> <p>ObjectivessMulti-antenna transmission</p> <p>QSpectral efficiency gain QArbitrary antenna configurationNear-optimal reception</p> <p>s</p> <p>QMIMO capacity exploitation QIterative (turbo) principle QLow complexity algorithm QMulti-user access</p> <p>8</p> <p>Transmitte r</p> <p>Introductio n</p> <p>MIMO techniquesMIMO Channel</p> <p>Generic iterative receiverClassification</p> <p>Optimal spacetime codingLD code</p> <p>Application to MC-CDMAEquivalent representation</p> <p>ConclusionCAI</p> <p>Part II: MIMO techniques</p> <p>9</p> <p>Transmitte r</p> <p>Introductio n</p> <p>MIMO techniquesMIMO Channel</p> <p>Generic iterative receiverClassification</p> <p>Optimal spacetime codingLD code</p> <p>Application to MC-CDMAEquivalent representation</p> <p>ConclusionCAI</p> <p>TransmitterInformation bits Coded bits Modulation symbols</p> <p>Convolution al code</p> <p>BICM scheme [Caire et al. 98]</p> <p>10</p> <p>Transmitte r</p> <p>Introductio n</p> <p>MIMO techniquesMIMO Channel</p> <p>Generic iterative receiverClassification</p> <p>Optimal spacetime codingLD code</p> <p>Application to MC-CDMAEquivalent representation</p> <p>ConclusionCAI</p> <p>MIMO channelsMulti carrier approach (OFDM)Equivalent flat fading MIMO channels</p> <p>Reduced complexity MIMO equalization (no ISI treatment)</p> <p>11</p> <p>Transmitte r</p> <p>Introductio n</p> <p>MIMO techniquesMIMO Channel</p> <p>Generic iterative receiverClassification</p> <p>Optimal spacetime codingLD code</p> <p>Application to MC-CDMAEquivalent representation</p> <p>ConclusionCAI</p> <p>MIMO channelsEquivalent flat fading MIMO channel</p> <p>Q By assuming ideal symbolinterleaving:</p> <p>Q T-block Rayleigh fading model Q Represents the optimalperformance of a MIMO-OFDM system over a radio-mobile channel</p> <p>12</p> <p>Transmitte r</p> <p>Introductio n</p> <p>MIMO techniquesMIMO Channel</p> <p>Generic iterative receiverClassification</p> <p>Optimal spacetime codingLD code</p> <p>Application to MC-CDMAEquivalent representation</p> <p>ConclusionCAI</p> <p>Classification of MIMO techniquessChannel State Information (CSI) CSI required at Tx and Rx</p> <p>QEigen beam forming QWater-filling QPre-equalizationCSI required only at Rx</p> <p>s s</p> <p>QTreillis based QBlock basedNo CSI required</p> <p>QDifferential STC QUSTM</p> <p>13</p> <p>Transmitte r</p> <p>Introductio n</p> <p>MIMO techniquesMIMO Channel</p> <p>Generic iterative receiverClassification</p> <p>Optimal spacetime codingLD code</p> <p>Application to MC-CDMAEquivalent representation</p> <p>ConclusionCAI</p> <p>Classification of MIMO techniquessChannel State Information (CSI) CSI required at Tx and Rx</p> <p>QEigen beam forming QWater-filling QPre-equalizationCSI required only at Rx</p> <p>s s</p> <p>QTreillis based QBlock basedNo CSI required</p> <p>QDifferential STC QUSTM</p> <p>14</p> <p>Transmitte r</p> <p>Introductio n</p> <p>MIMO techniquesMIMO Channel</p> <p>Generic iterative receiverClassification</p> <p>Optimal spacetime codingLD code</p> <p>Application to MC-CDMAEquivalent representation</p> <p>ConclusionCAI</p> <p>Classification of MIMO techniquessCSI required at Tx and Rx Spatial Data Multiplexing (SDM) [Foschini et al. 96, Wolniansky et al. 98]</p> <p>QEigen beam forming QWater-filling QPre-equalizationCSI required only at Rx</p> <p>Space Time Block Coding (STBC) [Alamouti 98, Tarokh et al. 99]</p> <p>s s</p> <p>QTreillis based QBlock basedNo CSI required</p> <p>Linear Precoded STBC [Da Silva et al. 98]</p> <p>QDifferential STC QUSTM</p> <p>Algebraical STBC [Damen et al. 03, El Gamal et al. 03]</p> <p>Linear Dispersion (LD) Code [Hassibi et al. 02]15</p> <p>Transmitte r</p> <p>Introductio n</p> <p>MIMO techniquesMIMO Channel</p> <p>Generic iterative receiverClassification</p> <p>Optimal spacetime codingLD code</p> <p>Application to MC-CDMAEquivalent representation</p> <p>ConclusionCAI</p> <p>LD CodeSTC latency: Input block length: STC rate:</p> <p>16</p> <p>Transmitte r</p> <p>Introductio n</p> <p>MIMO techniquesMIMO Channel</p> <p>Generic iterative receiverClassification</p> <p>Optimal spacetime codingLD code</p> <p>Application to MC-CDMAEquivalent representation</p> <p>ConclusionCAI</p> <p>Equivalent representationJoint space-time coding and channel representation</p> <p>17</p> <p>Transmitte r</p> <p>Introductio n</p> <p>MIMO techniquesMIMO Channel</p> <p>Generic iterative receiverClassification</p> <p>Optimal spacetime codingLD code</p> <p>Application to MC-CDMAEquivalent representation</p> <p>ConclusionCAI</p> <p>Special LD Code</p> <p>Example s</p> <p>18</p> <p>Transmitte r</p> <p>Introductio n</p> <p>MIMO techniquesMIMO Channel</p> <p>Generic iterative receiverClassification</p> <p>Optimal spacetime codingLD code</p> <p>Application to MC-CDMAEquivalent representation</p> <p>ConclusionCAI</p> <p>SolutionsTransmission matrices</p> <p>s</p> <p>Reception matrices</p> <p>s</p> <p>Equivalent channel matrix</p> <p>19</p> <p>Transmitte r</p> <p>Introductio n</p> <p>MIMO techniquesMIMO Channel</p> <p>Generic iterative receiverClassification</p> <p>Optimal spacetime codingLD code</p> <p>Application to MC-CDMAEquivalent representation</p> <p>ConclusionCAI</p> <p>Example: Alamouti Code over channelsTransmission matrices</p> <p>s</p> <p>Equivalent model</p> <p>20</p> <p>Transmitte r</p> <p>Introductio n</p> <p>MIMO techniquesMIMO Channel</p> <p>Generic iterative receiverClassification</p> <p>Optimal spacetime codingLD code</p> <p>Application to MC-CDMAEquivalent representation</p> <p>ConclusionCAI</p> <p>Co-antenna interference</p> <p>Desired signal</p> <p>CAI terms</p> <p>Nois e</p> <p>Multi-antenna transmission provides CAI terms</p> <p>CAI terms can be treated like ISI terms (which were due to the frequency selectivity in SISO transmission)</p> <p>21</p> <p>Introductio n</p> <p>MIMO techniquesPrincipl e</p> <p>Generic iterative receiverMIMO equalizer</p> <p>Optimal spacetime codingComplexity analysis</p> <p>Application to MC-CDMAAsymptotical analysis</p> <p>ConclusionPerformance results</p> <p>Reception strategies</p> <p>Part III: Generic iterative receiver</p> <p>22</p> <p>Introductio n</p> <p>MIMO techniquesPrincipl e</p> <p>Generic iterative receiverMIMO equalizer</p> <p>Optimal spacetime codingComplexity analysis</p> <p>Application to MC-CDMAAsymptotical analysis</p> <p>ConclusionPerformance results</p> <p>Reception strategies</p> <p>Reception state of the arts sOptimal solution: joint detection</p> <p>Q ML detection based on a super trellisSub-optimal solutiona.MAP MIMO detection b.SIC, OSIC, PIC detection c.MRC, MMSE, ZF equalization</p> <p>Optimal performance Very high complexity</p> <p>1. Disjoint decoding: MIMO detection channel decodingRelative low complexity Optimal performance for orthogonal STC (Alamouti) Sub-optimal performance for non-orthogonal STC</p> <p>1. Iterative decoding: MIMO detection channel decoding [Berrou et al. 93]a.MAP MIMO detection[Tonello 00, Boutros et al. 00, Vikalo et al. 02]</p> <p>Near optimal performance High complexity Near optimal performance reduced complexity23</p> <p>a.Filtered based MIMO equalization[Sellathurai et al. 00, Gueguen 03, Witzke et al. 03]</p> <p>Introductio n</p> <p>MIMO techniquesPrincipl e</p> <p>Generic iterative receiverMIMO equalizer</p> <p>Optimal spacetime codingComplexity analysis</p> <p>Application to MC-CDMAAsymptotical analysis</p> <p>ConclusionPerformance results</p> <p>Reception strategies</p> <p>Reception state of the arts sOptimal solution: joint detection</p> <p>Q ML detection based on a super trellisSub-optimal solution</p> <p>1. Disjoint decoding: MIMO detection channel decodinga.MAP MIMO detection b.SIC, OSIC, PIC detection c.MRC, MMSE, ZF equalization</p> <p>1. Iterative decoding: MIMO detection channel decoding [Berrou et al. 93]a.MAP MIMO detection[Tonello 00, Boutros et al. 00, Vikalo et al. 02]</p> <p>a.Filtered based MIMO equalization[Sellathurai et al. 00, Gueguen 03, Witzke et al. 03]</p> <p>Near optimal performance reduced complexity24</p> <p>Introductio n</p> <p>MIMO techniquesPrincipl e</p> <p>Generic iterative receiverMIMO equalizer</p> <p>Optimal spacetime codingComplexity analysis</p> <p>Application to MC-CDMAAsymptotical analysis</p> <p>ConclusionPerformance results</p> <p>Reception strategies</p> <p>PrincipleMIMO equalization stage Channel decoding stage</p> <p>s</p> <p>Application of the turbo-equalization concept to MIMO25</p> <p>Introductio n</p> <p>MIMO techniquesPrincipl e</p> <p>Generic iterative receiverMIMO equalizer</p> <p>Optimal spacetime codingComplexity analysis</p> <p>Application to MC-CDMAAsymptotical analysis</p> <p>ConclusionPerformance results</p> <p>Reception strategies</p> <p>MIMO equalizer (1)sMMSE based soft interference cancellation (MMSE-IC)</p> <p>Q [Glavieux et al. 97, Wang et al. 99, Reynolds et al. 01, Tchler et al. 02, Laot et al. 05]</p> <p>s</p> <p>MMSE optimization of both filters</p> <p>26</p> <p>Introductio n</p> <p>MIMO techniquesPrincipl e</p> <p>Generic iterative receiverMIMO equalizer</p> <p>Optimal spacetime codingComplexity analysis</p> <p>Application to MC-CDMAAsymptotical analysis</p> <p>ConclusionPerformance results</p> <p>Reception strategies</p> <p>MIMO equalizer (2)sOptimal solution: MMSE-ICTNr x TNr matrix inversion</p> <p>s</p> <p>Time invariant approximation: MMSE-IC(1)</p> <p>27</p> <p>Introductio n</p> <p>MIMO techniquesPrincipl e</p> <p>Generic iterative receiverMIMO equalizer</p> <p>Optimal spacetime codingComplexity analysis</p> <p>Application to MC-CDMAAsymptotical analysis</p> <p>ConclusionPerformance results</p> <p>Reception strategies</p> <p>MIMO equalizer (3)sMatched filter approximation: MMSE-IC(2) Iteration 1 Iteration p</p> <p>s</p> <p>Zero-Forcing solution: ZF-IC Iteration 1 Iteration p</p> <p>28</p> <p>Introductio n</p> <p>MIMO techniquesPrincipl e</p> <p>Generic iterative receiverMIMO equalizer</p> <p>Optimal spacetime codingComplexity analysis</p> <p>Application to MC-CDMAAsymptotical analysis</p> <p>ConclusionPerformance results</p> <p>Reception strategies</p> <p>Complexity analysis (MIMO equalizer)</p> <p>Proposed iterative receivers provide complexity gain29</p> <p>Introductio n</p> <p>MIMO techniquesPrincipl e</p> <p>Generic iterative receiverMIMO equalizer</p> <p>Optimal spacetime codingComplexity analysis</p> <p>Application to MC-CDMAAsymptotical analysis</p> <p>ConclusionPerformance results</p> <p>Reception strategies</p> <p>Asymptotical analysissAsymptotical performances = Genie aided receiver</p> <p>s</p> <p>Asymptotical equivalent channel</p> <p>30</p> <p>Introductio n</p> <p>MIMO techniquesPrincipl e</p> <p>Generic iterative receiverMIMO equalizer</p> <p>Optimal spacetime codingComplexity analysis</p> <p>Application to MC-CDMAAsymptotical analysis</p> <p>ConclusionPerformance results</p> <p>Reception strategies</p> <p>Asymptotical diversitysPair-wise error probability</p> <p>s</p> <p>Chi-square approximation and Chernoff bound</p> <p>31</p> <p>Introductio n</p> <p>MIMO techniquesPrincipl e</p> <p>Generic iterative receiverMIMO equalizer</p> <p>Optimal spacetime codingComplexity analysis</p> <p>Application to MC-CDMAAsymptotical analysis</p> <p>ConclusionPerformance results</p> <p>Reception strategies</p> <p>Asymptotical diversitysProposed definition of the space-time diversity</p> <p>s</p> <p>Total diversity exploited by both channel and space-time coding</p> <p>QModified Singleton Bound [Gresset et al. 04]</p> <p>Full channel diversity can only be achieved by using jointly channel coding and space-time coding</p> <p>32</p> <p>Introductio n</p> <p>MIMO techniquesPrincipl e</p> <p>Generic iterative receiverMIMO equalizer</p> <p>Optimal spacetime codingComplexity analysis</p> <p>Application to MC-CDMAAsymptotical analysis</p> <p>ConclusionPerformance results</p> <p>Reception strategies</p> <p>Performance results: simulation conditionss s s s sTheoretical independent T-Block Rayleigh flat fading MIMO channel Non recursive non systematic convolutional code (133,171)o, K=7 SOVA algorithm for channel decoding No spatial correlation Normalized BER</p> <p>Receive array gain not taken into account s Asymptotical curve: Matched filter Bound (MFB)sOptimal curve: AWGN decoupled</p> <p>Genie aided receiver Min(Nt,Nr) parallel AWGN channels</p> <p>33</p> <p>Introductio n</p> <p>MIMO techniquesPrincipl e</p> <p>Generic iterative receiverMIMO equalizer</p> <p>Optimal spacetime codingComplexity analysis</p> <p>Application to MC-CDMAAsymptotical analysis</p> <p>ConclusionPerformance results</p> <p>Reception strategies</p> <p>Performance results: Jafarkhani code</p> <p>Iterative decodin g</p> <p>Disjoint decodin g</p> <p>MFB is reached whichever iterative algorithm is used 5 iterations are sufficient 0.8 dB gain at 10-4 versus disjoint MAP receiver (state of the art)34</p> <p>Introductio n</p> <p>MIMO techniquesPrincipl e</p> <p>Generic iterative receiverMIMO equalizer</p> <p>Optimal spacetime codingComplexity analysis</p> <p>Application to MC-CDMAAsymptotical analysis</p> <p>ConclusionPerformance results</p> <p>Reception strategies</p> <p>Performance results: SDMDisjoint decodin g</p> <p>Iterative decodin g</p> <p>MFB is reached only with the MMSE-IC(1) receiver 7 dB gain at 10-4 versus disjoint MMSE receiver</p> <p>35</p> <p>Introductio n</p> <p>MIMO techniquesPrincipl e</p> <p>Generic iterative receiverMIMO equalizer</p> <p>Optimal spacetime codingComplexity analysis</p> <p>Application to MC-CDMAAsymptotical analysis</p> <p>ConclusionPerformance results</p> <p>Reception strategies</p> <p>Performance results: SDM overloadedDisjoint decodin g</p> <p>Iterative decodin g</p> <p>MFB is reached only with the MMSE-IC(1) receiver The Iterative receiver still converges although the rank of is degenerated36</p> <p>Introductio n</p> <p>MIMO techniques</p> <p>G...</p>