Elektronika Dasar II-Pertemuan 1-3

  • Published on
    17-Jul-2015

  • View
    4

  • Download
    0

Embed Size (px)

Transcript

Elektronika Dasar IIDr. Endarko, M.Si

Pokok Bahasan Analisis keadaan mantap (steady state), Perhitungan daya dalam kondisi mantap; Rangkaian tiga fasa Pengantar transformasi laplace, Analisa rangkaian menggunakan transformasi laplace; Teori Semikonduktor: ikatan kovalen, semikonduktor intrinsik, semikonduktor ekstrinsik; Dioda semikonduk-tor; Transistor sambungan: terbentuk-nya transistor sambungan, komponen arus transistor, stabilitas dan titik kerja transistor, model h transistor, persamaan penguat. Praktikum : (Transformator arus, Transformasi tegangan, Induksi elektromagnetik, Wattmeter, Histerisis)

Pustaka Utama James W. Nilsson dan Susan A. Riedel, 2008, Electronic Circuit, Pearson Prentice Hall. Petunjuk Praktikum Laboratorium Madya Sutrisno, 1986, Elektronika, Penerbit ITB

Analisa Keadaan MantapSumber Sinusoida

Perhatikan:

???????????? ?????????, ?????????????????? ??????????????????????????? bergeser ke kiri ?????????????????????, ?????????????????? ??????????????????????????? bergeser ke kanan

Karekteristik yang penting untuk tegangan atau arus sinusoida adalah nilai rms.Sebagai contoh:

Nilai rms dari tegangan sinusoida hanya tergantung pada amplitudo maksimum (Vm), dan

Nilai rms bukan merupakan fungsi baik frekuensi maupun sudat fasa

Contoh 1: Sebuah arus sinusoida mempunyai amplitudo maksimum sebesar 20 A. Dalam 1 ms arus dapat menempuh 1 siklus penuh. Besarnya arus pada saat t = 0 s adalah 10 A a) Berapakah frekuensi dari arus tersebut (Hz)? b) Berapakan frekuensi dari arus tersebut (rad/s)? c) Nyatakan i(t) dalam bentuk fungsi cosinus. Nyatakan dalam derajat d) Berapakah nilai rms dari arus tersebut?Jawab:a) c)

i(t ) = I m cos( + ) t i(t ) 20 + ) cos(2000 t

=

i(0) = 10 A, sehingga 10 = 20 cos , selanjutnya = 60T = 1 ms 1000 Hz b) f = 1/T =

i(t ) = 20 cos(2000 t + ) 60 20 d) I = I m = 14.14 A = rms 2 2

= 2 f = 2000 rad/s

Contoh 2: Tegangan sinusoida dinyatakan sebagai berikut:v = 300 cos(120 ta) b) c) d)

+ 30 )

Berapakah perioda tegangan tersebut (ms)? Berapakah frekuensi tegangan tersebut (Hz)? Berapa besarnya nilai v pada t = 2.778 ms? Berapakah nilai rms dari v?

Jawab:

2 1 2 s = 16.667 ms a) = 120 rad / s, karena = T, 60 = T =

b) f = 1 / = 60 s T c) Dari jawaban(a), = 2 16.667

t mendekati1.047 rad atau 60 , pada t = 2.778 ms , nilai v(2.778 ms) = 300 cos(60+ 30 ) =

, selanjutnya

d) Vrms = 300 = 212.13 V2

Contoh 3: Fungsi sinus dapat dinyatakan ke dalam bentuk fungsi cosinus dengan pengurangan 90 ( /2 rad) pada argumen fungsi sinusnyaa) Buktikan pernyataan bahwa: sin( t + ) = cos( t + - 90) b) Gunakan hasil (a) untuk menyatakan sin( t + 30) sebagai fungsi cosinus Jawab:a) Gunakan identitas trigonometri, bahwa cos( - ) = cos

cos + sin sin

Misalkan = t + dan = 90, serta diketahui bahwa cos 90

= 0 dan sin 90 = 1, maka cos( - ) = sin = sin ( t + ) = cos( t + - 90)b) Dari (a), kita dapatkat bahwa, sin( t + 30) = cos( t + 30 -

90) = cos( t - 60)

Contoh 4: Hitung nilai rms dari arus segitia periodik dalam gambar. Nyatakan jawaban anda dalam bentuk arus puncak Ip

Jawab:I rms = 1 Tt0 + T

t0

i dt

2

Secara analitik untuk interval 0 ??? T/4,

t0 +T

4 I

T 4 2

i dtt0

i=

p

T

t, 0 < t < T 4

= 4

0

i dt

2

Luas daerah di bawah fungsi kuadrat untuk satu periodet0 +T

i 2 = 4 i 2 dt = 4

T 4

T 4

16I p T2

2

t dt =

2

I T 3

2

p

dtt0

0

0

Nilai rata-rata diperoleh dari penyederhanaan untuk daerah satu periode dibagi dengan periode, sehingga diperoleh:imean 1 2 = = Ip T 3 3 1 IpT2

Nilai rms untuk arus adalah akar kuadrat dari nilai ratarata, sehingga:

irms =

Ip 3

Respon sinusoida

Pemakaian Hukum Kirchoff untuk tegangan:

Solusi persamaan differensial:

Dengan adalah sudut yang mempunyai nilai tangen-

nya = L/R

Komponen transient mantap

Komponen keadaan

Karakteristik solusi keadaan mantap (steadystate):1. Solusi keadaan mantap adalah fungsi sinusoida 2. Frekuensi dari sinyal respon adalah identik terhadap frekuensi dari sinyal sumber. Kondisi ini selalu benar didalam rangkaian linear ketika parameterparameter rangkaian untuk R, L, dan C adalah konstan. 3. Amplitudo maksimum dari respon keadaan mantap, secara umum berbeda dari amplitudo maksimum untuk sinyal sumber. Untuk rangkain RL yang telah kita diskusikan, amplitudo maksimum m untuk sinyal respon adalah dan V untuk

amplitudo maksimum dari sinyal sumber Vm

R +2

2

L

2

4. Sudut fasa untuk sinyal respon, secara umum berbeda dengan sudut fasa sinyal sumber. Untuk kasus rangkain yang telah kita diskusikan, sudut fasa untuk arus adalah - dan sudut fasa sumber tegangan adalah

PhasorPhasor adalah bilangan komplek yang memberikan informasi tentang amplitudo dan sudut fasa dari fungsi sinusoida

Komponen real Komponen imajinerContoh:

Phasor transform dari

Domain waktu ??? Domain frekuensi

Phasor dalam bentuk rectangular:

Penulisan notasi sudut:

Inverse phasor transform dari

Solusi untuk arus keadaan mantap

Penjumlahan cosinus dengan phasorJika y1 = 20 cos( t - 30) dan y2 = 40 cos( t + 60), nyatakan y = y1 + y2 sebagai fungsi sinusoida tunggal. a) Selesaikan dengan menggunakan indetitas trigonometri b) Selesaikan dengan menggunakan konsep phasorJawab: a) Pertama-tama baik y1 dan y2 kita expand menggunakan aturan cosinus:

Sehingga, y = y1 + y2

b) Menggunakan metode phasor

Elemen rangkaian pasif dalam domain frekuensiHubungan V-I dalam Hambatan

Phasor transform untuk tegangan

Phasor transform untuk arus, sehingga

Hubungan V-I dalam Induktor

Phasor transform untuk tegangan

Hubungan V-I dalam Kapasitor

Impedance (Z) dan Reactance

Hukum Kirchhoff dalam domain frekuensiHukum Kirchhoff untuk tegangan:

Menggunakan identitas Euler, didapat , Sehingga dpt ditulis

Sehingga, KVL dalam domain frekuensi

Hukum Kirchhoff untuk arus: KCL dalam domain frekuensi:dengan Menyatakan phasor untuk individual arus

Impendace untuk kombinasi seri

Contoh: Rangkaian RLC terhubung seri, dengan R = 90 , C = 5 F L = 32 mH, dan sumber tegangan sinusoida vs = 750 cos(5000t + 30) Va) Nyatakan rangkaian ekuivalen dalam domain frekuensi b) Hitung arus keadaan mantap I dengan metode phasorJawab: a) b)

Impendace untuk kombinasi paralel

Contoh: Sumber arus sinusoida menghasilkan arus is = 8 cos 200,000t Aa) Nyatakan rangkaian ekivalen dalam domain frekuensi b) Tentukan fungsi keadaan mantap untuk v, i1, i2 dan i3 Jawab:

a)

b)

Sumber arus R??? 10 L ???j8 C ??? -j5

Tegangannya adalah

Dari rangkaian diperoleh:

Delta-to-Wye TransformationImpedans Y sebagai fungsi impedans

Impedans sebagai fungsi impedans Y

Contoh: Dengan menggunakan transformasi -to- Y, tentukan nilai dari I0, I1, I2, I3, I4, I5, V1 dan V2.

Jawab:Untuk bawah (bcd):

Zabn // Zacn

Ingat bahwa:

V = Van + VndMaka :ab Untukn

Kombinasi Zan dengan node nd

dan ac dapat dihitung dengan: n I

I

Van Van I abn = , I acn = Racn Rabn

Sehingga, Sehingga: dan,

I =

= 2 j

8

A, dan I =

I

=

4

+ j

8

A

1

abn

3

2

acn

10

15

Dan,

Maka,

Sehingga,

Sekarang kita periksa hasil perhintungannya

Transformasi sumber dan Rangkaian ekivalen Thevenin-NortonTransformasi sumber dalam domain frekuensi

Domain Frekuensi untuk rangkaian ekivalen Thevenin

Domain Frekuensi untuk rangkaian ekivalen Norton

Contoh: Gunakan konsep transformasi sumber untuk mencari tegangan phasor V0 untuk rangkain dibawah

Jawab:

Zl

Sehingga I0 = V/Z

Maka, Vo = (I0)(Zl)

Contoh: Tentukan rangkaian ekivalen Thevenin dengan mengacu titik a, b untuk rangkaian pada GambarJawab:

a

b

a

b

dengan,

mak a,

100 = (130 j40)I + 10Vx

Sehingg a,

Akhirnya:

Untuk mencari impedans Thevenin (ZTh), kita gunakan rangkaian di bawah ini

10

Rangkain ekivalen Thevenin

Metode Simpul-tegangan (nodevoltage)Gunakan metode simpultegangan untuk menentukan arus-arus cabang Ia, Ib, Ic dalam rangkaian disamping.Jawab:Simpul-tegangan dengan referensi yang telah dipilih dalam simpul 1 Penjumlahan arus

Dikalikan dgn

Penjumlahan arus dalam simpul 2

Arus pengantur Ix Dikalikan 1 + j2 dan V2

Solusi V1

Simpul 1

Arus cabang dihasilkan:

Untuk menganalisa perhintungan

Metode mesh-currentMenggunakan metode mesh-current tentukan V1 , V2 dan V3

Jawab:

Loop 1

Loop 2

Loop 1 dan loop 2, menghasilkan

Jadi Arus-arusnya:

Jadi, teganganya:

Check hitungan:

Transformator Perangkat yang bekerja berdasarkan kopling magnetik Biasanya digunakan baik pada komunikasi (mencocokan impedansi dan mengeliminasi sinyal DC dari bagian sistem) dan rangkaian daya (menetapkan tingkat tegangan AC yang memfasilitasi transmisi, distribusi dan konsumsi daya listrik) Model rangkaian dalam domain frekuensi untuk transformator yang digunakan untuk menghubungkan beban ke sumber

R1 = resistansi untuk lilitan primer R2 = resistans