Fundamentos de Transfer en CIA de Momento Calor y Masa - Copia

  • Published on
    03-Jul-2015

  • View
    938

  • Download
    9

Embed Size (px)

Transcript

<p>, .. .</p> <p>,</p> <p>I.OftIJ lIu~ I .... I~ la</p> <p>obr~!</p> <p>, ,I~n ~o</p> <p>COl'OCl!p~</p> <p>y dcliricior&gt;e&gt;</p> <p> Esllia de ft.idos Dc:saipd6n de ~ fdo</p> <p>.f</p> <p>I</p> <p>Ob~ de b m.:l501: enkJquc</p> <p>de 'Nlrncn dc COO1ro1</p> <p>Scg\n:l.&gt; ~ de Ncw\:Irl del ~ enfocrJc d.............. n de co.r.:ruI Conserv,x;(,n "" b er&gt; en , i.lema ingl 1&gt; SI. ""tamos con_cn cidol de qu . 1a b uena compren';';n:as' como l. facilidad para resol_c' p roble mas en el rea dd p'ocmulado , In Ja,~o dd I~mp(l. 1""," ""in de r . lu discip l"" .. drsarrnllada:s "'p"udamenu r\le reali,,:",, I~ por pr imera ,e~ por I.,,{h..;~ I'. and ,l . en 1'.lO ~ . con ou ,eOr fa de la "ilpa li mile. q~ fue verificad. P'H ",.dio de I~ upcrimenlaci"m. 1... mtcinio ,k fluid.,. tl modcrn~ ''''JUfnencia de mo mento". ':"\10 a.,l.!i.ica . COmo U </p> <p>,,en ro ,;c"doa cero. "cordal'$(. '1m "n p~dt u iui. c.f~ .... o cufl.n1~ e n un Ooi"" U I ~Ueo. Po. e~ el elemento de Jo. figura 1. 4. ~l i. n tra. c.le demcn to 1"'" manece en re poso . la gnvcd ".1 y lo funzOl nfmal. , 3c,. n . obre l. El P""" de un elemon l" de nuido c pc(.1.r .1y .1 '/21 OS [&gt;. .1 un ~"'" I''' COI rcpolO,r. t' '" RE" la di,ccd,,,, rIc x .</p> <p>""'m</p> <p>,T.</p> <p>1).""</p> <p>Ya que .en ti</p> <p>~ !J.yltu.</p> <p>la ecuaci n ' !I'Nio&lt; ,</p> <p>~l)'Wierle</p> <p>en :</p> <p>t&gt;ivid"" .... luda b etuad i&gt;n po' !J. y !J.z ~ ,omln do el Hm l e cuando el vulu"",,, lid ele..... nto ,icn m nl id,.,1 ex.br. d,m." mapa . ,e p.e",nl. n u n nmpn eoul ar. Lo, rscalares le enconu",n en lip., norm.] en elle libro. F. n la fi~ur~ I.~, la, lnea. " azada, re pre",n.,n el lugar gl",,:t/j, T'"ra ~ ncon lu r l. d ireccin p~ra la q u~ dP/d, n u n mi ~ im". la d"';Y d'!. (d/;t,a con""rti, .Iug. en (lb,) (seg)' I( tl), Y '" valor e. I {:." v,"x:" a</p> <p>y b son constantes.</p> <p>1.3 Encuentre el b'Tadiente de temperatura en el punto (a, b) en el tiempo t = (4L 2 ja)ln e cuando el campo de temperaturas esl dado por</p> <p>P, obI. ",.. lJ'f ~ 'I ~ r</p> <p>1. 1 i~m</p> <p>uirrl~,,';on.lmc," .</p> <p>11",,,,,,.,,,..,,, 1, .. u rnpr ,1c..:,i lS</p> <p>~"</p> <p>los pI"-</p> <p>blcm~,</p> <p>1.2</p> <p>~ 1. 3~</p> <p>b . un id adn .te r . I"' ~ 'l~( IJ p,e';'''' nI': d.d. m pie ,", d,ado e."""I" 1'. n li .t,,, I,. ~" l'i~ 1 po, ..S"'"!,, (pr1010"". 1.2)" t:,,~I~. ,k'h~" te ' ~)f</p> <p>libra,</p> <p>l.; C~.i ln de L. , ,~" urbd". cnun.c'J I~ .... "",fK:ie torrelt"', le h~ll.r.i ,ona .ilU""~'" .0' .Ili(l. AunQu. la Ticrra t icne mo vimiento p. "pio, CJ ....,. ' 0. d~"T dc Jo. "n i.. , nfJCsi,~naremo.s a la prnim de acuerdo con la cara del elemento sobre la cuJ.1 acta. Por ejemplo,P = PI, P2 = Plx t.lx' Y as sucesi\amcntc. Calculando las rucr/.as que actan sobre cada Ulla de las caras, itdcrns de la fucr/.a dehida a la gr;\'cdad que acta sohre el elemento pg.:lx fl.y fl.z, se \'eni que la suma de</p> <p>las fuerzas es:</p> <p>pg(.lx t.y t.z)~(PI, -pi",,) t.y tJ.ze,</p> <p>+ IPI, - PI",,) tJ.x t.ze, + (pI, - Pln,J tJ.x t.ye, ~ OSi se divide enlrt' el \olumen del elemento !},x.:ly fl.z_ st' obSerVi.1 que la ccuacin anterior se con\-ierte en:</p> <p>pgdonrlc se ha invertido el orden de los trminos que indican presin. Al tender Cl'rO el talllarlo del elemcnto, .6.\, ~" y 4. tambi-n tienden a C{'fO y el ek mento tiende al pUllto (x, y, ,.:). En el lmite:</p> <p>a</p> <p>"l~,\1 r1 ,-,"-</p> <p>,!U~ l~ mi~;"~ 1 r~l' ,M 11. I""U' l'~'pt"~ C\l I.1r~ ,.1 ,ector '~"\"~cJi,,,, l. '</p> <p>""'-;".</p> <p>'1 '"'</p> <p>,.""m',,, .1, ,;;,n p.:!).</p> <p>1'"" ,;,.,,</p> <p>'0"</p> <p>,1&lt; 10 """'ci .... C S) ,.. Il (2-3) se puede integrar entre el punto H y la superficie. El gradiente de la presin se convierte en dP/dy e y. seleccionando e1 eje y paralelo; g-a COIllO puede verse en la figura 2 A.</p> <p>r=-</p> <p>As:</p> <p>l.a integracin entre los puntos -"</p> <p>U e y - d, da:</p> <p>o</p> <p>::~.-al'igura 2.4 Tanque de combustihle uniformemente acelerado La profundidad del fluido d, en el punto que y del ngulo 8.</p> <p>n, se determina a partir de la geometra dd tan-</p> <p>2.3 FUERZAS SOBRE LAS SUPERFICIES SUMERG IDASLa determinacin de las fuerzas que actan sobre las superricies SUlllergirlas se realiza rrecuentemente en estr dtl .",, ocimirn1 ""ahl m u'OI.~ en la figu,. 3.2. . ,\ hora b . (on,licionel de flujo "'" in,lel",ndie nt e. neto de ... Iida de la maA dd ..... lumen d&lt; oonlrol. S leoc que Ji la mua ut cn lrando 01 n.t"men de contr ol, ell el, noycn a In"., de la .uperficie de ,ntrol. el ncgal i~n el produc\o . " 1 11a1CO&lt; /1 ya que /1 &gt; 110". Yel COI (J u . por lo ,anl0, negati vo. A., . si Jo inttg,1l ti:I'...iti.... ","y \111 nUJO !&gt;t1O de ... Iid" de ma ... ; nt",lj ~. hay un flujo neto de n&gt;"ld~ de """~: ce' .... ]~ rn",. que oc cnmtnfr; dent'o de l vululnn&gt; dr control eS Cons-</p> <p>{.n le.1...:1 npide,. de &amp;C\lrn\l l.cin de mua denuo dd ' olwnm de control. oc pu.e1. para eSla ,;uacio", l. rorma c()!Venicme de Ii e~ pr.sil'l de conlinud d c"</p> <p>,el"";",,</p> <p>JL</p> <p>p(v'n)dA _ O</p> <p>(4-2)</p> <p>Olr CHo importan,. n que in eluy. a la derivada parcial con , peCIO ,1 tiempo , es, de n uevo , igual a "', AMmi, el t"" ino de la aensidad que apar. ,,", en la int.~ral d uper fi ci., oc puede cance lar. L. exprc.in correspond,ente a 1 Jnse ....'.. c~o'tn de IH maSa para un flujo incom ..... presible de e"~ na turalea, .e convierte entonces, ro:</p> <p>(43)Los oiguien t ejemp lo ",irin para explica. I::t apl icacilm d. la "cuaci"n (4 1) a lgunos cas", que se repiten con rrccucncia,.n l.:t tr"".ler.ncia mo mento .</p> <p>ne</p> <p>EJBl1'LO t</p> <p>Co..., pri"",. ". rol P'P" '1 ..,.110. nujo. dt .. lido Y an de' n.jo . ""n,,,, dd ,olu .... d , "",,,ol Do: _ . ... U\o ...... _ . la IIdl... '00&gt; d&lt; "" fl ujo bmiJut ,n un """duc'o circul.r . E..... "PII.", d, ing,ni"i . a ~o", .. "",,,di.,.. . . lormo d. ob, ... er !lo .-.,Ioci dod</p> <p>m. di. a pan;" d. ,,,. p".lo...En b po.i ,jn~</p> <p>.. q"" .. iot ... r" P", fI] d, ",Iocid.d. l. "'picltz d. nuJo d . ..</p> <p>""'</p> <p>"r... es",,&gt;o del flujo ptomtdio I!ancia pa ni cu lar ,~" e",c ca ,,,, "'l.[J l MI' WE </p> <p>3</p> <p>n,inn " o! ,. """,,- . ,</p> <p>1 i.M</p> <p>p( dA - 10 - 20 .. - IOk5lmin</p> <p>' 1i 1</p> <p>.</p> <p>I'dV~ dI ._ .!"</p> <p>oIM .!. (M - U)OOIdi. """ ... "" ... ti la_""" en .... I.. .u..</p> <p>~ '" .. la ..... 101&amp;1 el&lt; ool~&lt; c O'u.'Ch~~i~ ~b~.I " "" "" tubo como ap., rccc e n l. figura. La&gt; prop iedad Jel [Ju ido cambian d. un ]ad" a otr" de un. "n,la de dH &gt; e . P'''' no '01\ hmciun~ , del e mpo . La , 'd o ci d,,. ,;"p:anlda,</p> <p> ~,</p> <p>lim Pl "~, - ,,,,_.! I'.).1 di</p> <p>que .. la forma e'p"ci(cad . en el cnu nd~d" d~ J~ . egun da ley de N""'lon. ecuacin (~ I . El prime r li mit e para diado d c",cho d. I~ (Oua cin ... puede calcu lar ui:</p> <p>...... "m</p> <p>PJIIL .... - r"J. d , = d. '" :lo ,</p> <p>So: pucntro l en un COnlpo d. fuerza. v , lo que dv," como usuhado b rapidu de flujo d. SI lid. M mo men to a tlav6 de dA. ~:ot. ptod ~ClO puedt i " . 1"""'01</p> <p>p." 01 mom..... II". ..</p> <p>75</p> <p>.:n '" rorma inlegral el trmino f1~io de mommto m mcionado ;,orriba incluye la ,"pide. de momenlo que enl,a al volumen de ~ontrol ... como el que nle . Si eOl entrando mua al volumen, el ,!!"o del product o v n, es neo gativo, y el flujo uodadndemomentoeUl en trando alsulenta. Jnvenamen t .. igno positivo dd producto y n. uti a&gt;ociado a un flujo de ..li cia de mo mnto dew.e el volumen de co ntrol. Po r lo tanto los dos primeros trminoo que se en cuentr~n del lad o derocho de La ecuacion (5 3) oe pueden e"",ib i"</p> <p>rapide~ dd momen to ) que sale del volumen de ~ontrol</p> <p>1</p> <p>rapide~ de mon,en to) q~e .ak del v"lumen de cuntrol</p> <p>_</p> <p>11</p> <p>. p(. ' n) dA</p> <p>cnntrol</p> <p>l.. ,apidez de ~~um uladon de momento li"eaI den tru del volu men ,Id p~ede e~pre ... rse as :</p> <p>y el equilibrio total de momento li neal p;,.., el flw;' IJ, ' Un e"udio ,kt.ll~d" de loo problemas que.., pr.",man a coruin....a ..'" a m.. n.... d. tjernpk&gt;., (ac.li,ari. Lo compretio n y I"""mni r~ ~ aJ"",,,,,, .... ~...,. des.n~ohllr.ll en b u,ili~ :o 1........ 10 ...... l!~" de un "ojo ....0.._ d . n..ido dmpr ... blu Ilio.. lo .u.ficie.... eompI'lO p&amp;n p&gt;dueir __.</p> <p>'dono .</p> <p>'L,</p> <p>'-.,'</p> <p>'.Lo 1.""", .~ ,,,,,,,niml' de l &gt;r]&gt;t ....... 1....... que " " " ' , " ' _ .. "",,,m ...'" do Momeo'o .. la ecuacin ISIClcin (5-9 ). A menudo, a la ~cuaQ&gt;4, '" l. llama Oftrrta d.1 mo.... nlO d. la mccania de fluido. y el '''lO de 1M uprclion~1 ms "til.. Y m .mpliamente u tili .... d... en ' 11. campo. De nucoo K I~ advierte al ~stud;.nl. qu. d.b~ "Hnt~iIl si.mpre con la exprelin integral complela cuando Clt,; ,.,.,Iviendo un problema. Solam.nl' d .nili.i, trm ino por termino de la exp.,oin, l, pe,mitir. Ucgar a l olucion conecta, en l:tnto '1"e ca u" de consideracion., "p.auradas, cierto. trmino. podran ca.lrub..e ;ncon'CI .men,., o p:uarsc por alto complcument . Como comentario final, oc diri '1'" har que nolu qlK la upr ion para clt~or~m. d~1 rno .. ~n'o. on l. forma dada, p uede aplicar", .olam.nl. a un volumen de control " nriat.</p> <p>PROBLEMAS5.1 Un objot" b'dim .n,innal '" coloca en un tUn.1 d. "3ua d. 4 11. de ancho como :apar"'" en la figun. L. vdocidad en contra d.1a o;orrionte. ~I." uniro""" a lo lu,o d. la Kii&gt;n ITan$wruJ. Encuentre", el valor de v. pano el perfIl d.1a ""Ioo;;dod del m;'mo Itnlido del_ o;m;ent.</p> <p>P,obIo", .. 81</p> <p>T</p> <p>~~115.'2 En la figura pu~d~ "~r$e un motor estacionario de jet. E. entrando aire que tiene una d .... idad de O.080~ Ib .. /II' . Lu mas !ran.~er ...le eccional". de entrada y salida JOn de 10.8 fI', La mua de combwniblc conoumida rcpre..,nt~ .1 1,. de la ma.a de aire que entra a la sec"" de p",eba, Cal ~ue el impulw qu~ derfQU" diOlQ nWlw para Iu (Qodidooel e.pecificada ..</p> <p>'"</p> <p>,, , </p> <p>5.SSi en " .;&gt;tema dado para el problema 5.1,la</p> <p>r,.=. total de arrulre</p> <p>ejercida .obr. el objelO e. de 500 Nlo de longimd norm&gt;.l a la di recd6n M flujo y si !le desprecian ~ I fuu~as que actw.n ~bl" u...... d ocidad.le 10m/Kg. Cuil n la f"ena ejercido po' el morro d. a;"a".,b,e el (anqlle ?</p> <p>pa,.; bajo "n d&gt;oOl fu....a ~naciuna.i ... .. Suponga que d " "jo oc ru lia .i n friccin. 5.12 Loo figu . a ,igu(o,e muen ... un vde.a OOn un irlsulo de ~iro /J q u~ so: mueve (nn una vd"dad constante u . La vclcta , ecib" un cho rro que de una t&gt;oqu i ll~ fij o ro ll una veloci dad v.</p> <p>5.11 U.... placa.., muc".I'."P" ndiC\lI~rm.nl. haci;o. un CooHOq U.... Iccon una upidn de ~ 'p. [1 chorro tkja uJi. ~ con u "",, npidu de Z ' l ) fl~~ y</p> <p>,.Ie</p> <p>, "</p> <p>, "</p> <p>(a) Suponga q ue l. ", Ieta Li mon!ad. ",brc . ;e lel como ,e H en el dibujo. O,"'u., ( que la I""enci. tran .... i,ido al rro, es mi,,;ma cgndo". f~- I /]</p> <p>,</p> <p>(b) Suponiendo que hay un gran n mero de vdel'" $imibre5 unid"" ~ una rued ~ giralOria cUY" ,'Claridad perifrica. u,o Mmustr.", que la polenci a \fansm;' id~ es mxima cuando u,/1) - j.5.13 La onda de choque que puede verK en la figura .guen IC , K mueve a la derech con una velocida rl de "" fpo. 1.... propiedad .. en l.u palies de, lamera y Ira. era de la onda de choq ue no son funcion e. dd tiempo. U$ando el "olumen de con trol de la ligura, demu.1I que la difcI'ncia de presin al cruzar la onda de choque cs.</p> <p>,</p> <p>1:</p> <p>" ,'5. 1 ~</p> <p>" "</p> <p>',. O</p> <p>E.amin. el "olumen dif.r M p ..... i n en tl, ubo. :'.21) !luyendll agu a de mar p. 6-4 1u./fJ, a tr~v .Id propulsor ., comu se h;'.o en .J captu lo 5. un volumen general de control, fijo en un espac io inercial ubicado en el campo de nujo de un fluido, como puede ver&gt;. en la figura 6.2. El ,isle ma bajo estudio, marcado por medio de line.. punteadas . cup" el volumen de control en el tiempo r y.u p"" icioo wnhicn &gt;parece dcop"':' J~ haber trans curri do un ti .. mpo lJ.,. [n ~, Ia fi/;Un, el .i"cma oc upa la regin I en el iM!&gt;.nte ' . la regin IJ mi ' 6 ~ la regin [JI e, co mn al ,i'lema lan.o en t como en 1+ 6 t. En " empo I +1'11 ae nag'. total d~1 ,;, tem ... e puede eKpr..., de b . i</p> <p>.c,</p> <p>lI.1l"'me m 'nn _ dida ... lo rui/lD t .. " ...oIoo do: n'maomiftl ... ddin;<b> . .. ""do poA~"" .lIOodo .. r..J.iud el ru superficial es lo ,uficientemente grande como para que puJamos considenr l. vclcidad de c.le fluirl" como de.preciable. Rojo ..... "ondicione</b></p>