Graph trạng thái

  • Published on
    13-Jul-2015

  • View
    838

  • Download
    5

Embed Size (px)

Transcript

<p>HBK H NI n iu khin logic THIT K MN HC :IU KHIN LOGIC</p> <p>I.</p> <p>Nhim v :Thit k h thng iu khin cho cng ngh cho truyn ng bn my bo ging nh hnh v di y</p> <p>II.Ni dung: 1.Thit k s nguyn l 2.Tnh chn thit b 3.thit k s lp rp III.Thuyt minh v bn v 1.Mt quyn thuyt minh 2.Hai bn A2 cho s nguyn l v s lp rp T T Nguyn Anh Sn Lng Thi Trnh Nguyn vn Long V Hong Giang Ma trn trng thi Ma trn trng thi GRAFCET GRAFCET H tn sinh vin Phng php thit k Phng n mch lc,iu khin in-in (tip im) in-in (khng tip im) in-in (tip im) in-in (khng tip im)</p> <p>Created by AnhSon</p> <p>Page 1</p> <p>HBK H NI n iu khin logic</p> <p>GVHD :Nguyn Tr Cng</p> <p>Li m u Ngy nay khi m lnh vc t ng ha i su vo tng ng ngch ca tt c cc khu trong qu trnh to ra sn phm .Cc quc gia, cc hng sn xut u khng ngng nng cao mc t ng ha trong tng quy trnh sn xut .Nhm nng cao cht lng ,gim gi thnh ,tit kim chi phNc ta tuy l 1 nc cn ngho nhng cng khng nm ngoi quy lut chung .Nhng nm gn y cng vi s i hi ca sn xut v s hi nhp vo nn kinh t th gii th vic p dng cc thnh tu khoa hc k thut v t ng ha vo qu trnh sn xut c nhng bc tin ng k to ra nhng sn phm c hm lng cht xm cao tin ti hnh thnh nn kinh t tri thc . Mt trong nhng ng dng ca cng ngh l cng ngh my bo ging m em thit k. H thng s gip iu khin bn my chy theo yu cu t trc thc hin gia cng ct gt chi tit c kh .Vi phng n thc hin l :Ma trn trng thi Bng s n lc ca bn thn v s hng dn tn tnh ca thy Nguyn Tr Cng em hon thnh n ng thi hn.Tuy cn nhiu thiu st v hn ch m em bit m khng th trnh khi song bn thit k l n lc v c gng khng mt mi ca em trong hc k va qua.Em mong cc thy ch bo thm Created by AnhSon Page 2</p> <p>HBK H NI n iu khin logic</p> <p>em c th hon thin n ny . Sau y em xin trnh by phn thit k ca em :</p> <p>---------------------------------*--------------*-------------*-----------------------------------</p> <p>CHNG I.YU CU CNG NGHPHNG PHP THIT K :MA TRN TRNG THI PHNG N MCH LC,IU KHIN :IN _IN (TIP IM)</p> <p>Thit k h thng iu khin cng ngh cho truyn ng bn my bo ging c s cng ngh nh sau:</p> <p>Created by AnhSon</p> <p>Page 3</p> <p>HBK H NI n iu khin logic</p> <p>N, V21 T, V 13 V &lt; V D C B1 &lt; 2</p> <p>a</p> <p>V3</p> <p>A E</p> <p>Chuyn ng ca bn my mang tnh cht chu k.Qu trnh ct gt ch xy ra hnh trnh thun ,hnh trnh ngc l hnh trnh chy khng ti a my v v tr ban u. Ban u khi ta n nt khi ng ,ng c s ko bn my chuyn ng theo hnh trnh thun tng tc n vn tc V1 .Ti y sau khi chuyn ng n nh th dao bt u ct vo chi tit (dao ct vo chi tit tc thp trnh st m chi tit). Khi bn my n B, cn phi gia tc bn my chuyn ng vi vn tc V2 &gt; V1 thc hin chuyn ng n dao nh ct gt..Qu trnh ny kt thc im C. Ti C ng c ko bn my gim tc xung V1 phc v cho qu trnh o chiu.Sau khi chy n nh vi vn tc V1 bn my n D. Ti D ng c bt u o chiu vi vn tc V3 v ko bn my chuyn ng theo hnh trnh thun cho n khi vn tc</p> <p>Created by AnhSon</p> <p>Page 4</p> <p>HBK H NI n iu khin logic</p> <p>bng khng .Sau tip tc theo hnh trnh ngc cho n khi gp E . tng nng sut, yu cu trong hnh trnh t D E , iu khin bn my chy vi vn tc V3 &gt; V2 &gt; V1 nhm a nhanh bn my v u hnh trnh thun. on EA l on bn my thc hin gim tc theo hnh trnh ngc v vn tc V1 phc v cho qu trnh o chiu sang hnh trnh thun. Khi bn my v n u hnh trnh thun s t ng dng li ngi vn hnh ly sn phm ra. Chu trnh s tip tc khi c tn hiu t ng vn hnh . 1. Xc nh cc tn hiu iu khin &amp; cc tn hiu chp hnh. T phn tch trn, ta xc nh nguyn tc iu khin chuyn ng thun nghch ca bn my l nguyn tc hnh trnh. V vy, cc tn hiu iu khin a, b, c ,d,e xc nhn v tr ca bn my ti A, B, C, D, E trong mi chu k chuyn ng thun nghch. Quy c cc trng thi ca cc tn hiu iu khin nh sau:</p> <p>+ a =1: Nu bn my qua A &amp; ra lnh iu khin bn my chy thun vi vn tc V1 (nu bn my ang ng yn ti A). + a =0: Khi bn my ri khi A. + b =1: Xc nhn bn my ti B. Ra lnh bn my tip tc chuyn ng thun vi V2 nu trc bn my chuyn ng thun vi V1; cn ra lnh cho bn my gim tc t V3 xung V1, nu trc bn my ang chuyn ng ngc vi vn tc V3. + b =0: Khi bn my ri khi v tr B. + c =1: Xc nhn bn my qua C. Ra lnh cho bn my gim tc t V2 xung V1 v tip tc chuyn ng thun, nu trc bn my chuyn ng thun vi V2; cn nu trc ang chuyn ng ngc vi V3 th tip tc duy tr trng thi c. + c =0: Khi bn my ri khi C.Created by AnhSon Page 5</p> <p>HBK H NI n iu khin logic</p> <p>+ d=1: Xc nhn bn my ti D. Ra lnh cho bn my chy ngc vi V3. + d =0: Khi bn my ri khi D. +e=1 :Xc nhn bn my ti E .Ra lnh cho bn my gim tc theo hnh trnh ngc v vn tc V1 +e=0 :khi bn my ri khi E Nh vy, cc tn hiu a, b, c, d,e l cc tn hiu xung. Cc tn hiu chp hnh (tn hiu ra) l: T, N, V1, V2, V3. Trong : T _ l tn hiu chp hnh ng tip im bn my chy thun. N _ l tn hiu chp hnh ng tip im bn my chy ngc. V1 _ l tn hiu chp hnh ng tip im bn my chuyn ng vi vn tc V1. V2 _ l tn hiu chp hnh ng tip im bn my chuyn ng vi vn tc V2. V3 _ l tn hiu chp hnh ng tip im bn my chuyn ng vi vn tc V3. Cc tn hiu chp hnh s xut hin khi mt t hp nht nh ca cc tn hiu iu khin tc ng nhm iu khin bn my chy ng thit k.</p> <p>Created by AnhSon</p> <p>Page 6</p> <p>HBK H NI n iu khin logic</p> <p>---------------------------------*--------------*-------------*-----------------------------------</p> <p>CHNG II:XY DNG HM IU KHIN</p> <p>abcdeTNV1V2V3=vora</p> <p>Graph trng thi:1000010100</p> <p>0000010100</p> <p>0100010010</p> <p>00000 10010</p> <p>0010010100</p> <p>00000 01100 0000101100 0000001001 0001001001 0000010100</p> <p>Created by AnhSon</p> <p>Page 7</p> <p>HBK H NI n iu khin logic</p> <p>1,Hnh trnh thunvora</p> <p>= abcTV1V2</p> <p>000000100110000110010101000101001110001110</p> <p>1</p> <p>2</p> <p>3</p> <p>4</p> <p>5</p> <p>6</p> <p>7</p> <p>c ba</p> <p>tt 1 2 3 4 5 6 7</p> <p>000 (1) 3 (3) 5 (5) 7 (7)</p> <p>001</p> <p>011</p> <p>010</p> <p>110</p> <p>111</p> <p>101</p> <p>100 2 (2)</p> <p>T 0 1 1 1 1 1 1</p> <p>V1 0 1 1 0 0 1 1</p> <p>V2 0 0 0 1 1 0 0</p> <p>4 (4) 6 (6)</p> <p>Bng M2</p> <p>ctt 00 00 011 010</p> <p>b110 111</p> <p>ca 101 100 X YPage 8</p> <p>Created by AnhSon</p> <p>HBK H NI n iu khin logic</p> <p>0 1 (1)</p> <p>1 2 4 6 (6) (4) (2) 0 0 1 1 0 1 1 0</p> <p>2+3 (3) 4+5 (5) 6+7 (7)</p> <p>Do c 4 hng nn chn 2 bin trung gian l X ,Y Bng CacNo cho X:</p> <p>c ba</p> <p>000 001 011 x y 0 0 0 0 0 1 1 1 1 1 1 1 1 0</p> <p>010</p> <p>110</p> <p>111</p> <p>101</p> <p>100 0</p> <p>1 1</p> <p>0</p> <p>X= X +b Bng CacNo cho Y:</p> <p>c ba</p> <p>Created by AnhSon</p> <p>Page 9</p> <p>HBK H NI n iu khin logic</p> <p>00 x 0 0 0 0 1 1 1 1 0</p> <p>00 1</p> <p>011 y 0 1 1</p> <p>010</p> <p>110</p> <p>111</p> <p>101</p> <p>100 1</p> <p>1 1</p> <p>1</p> <p>0 0</p> <p>0</p> <p>Y= c Y + a</p> <p>Bng CacNo cho T:</p> <p>c ba</p> <p>00 x 0 0 0 0 1 1 1 1 1</p> <p>00 1</p> <p>011 y 0 1 1</p> <p>010</p> <p>110</p> <p>111</p> <p>101</p> <p>100</p> <p>1 1</p> <p>1</p> <p>0</p> <p>T= X + Y Bng CacNo cho V1 :</p> <p>Created by AnhSon</p> <p>Page 10</p> <p>HBK H NI n iu khin logic</p> <p>c ba</p> <p>00 x 0 0 0 0 1 1 0 1 1</p> <p>00 1</p> <p>011 y 0 1 1</p> <p>010</p> <p>110</p> <p>111</p> <p>101</p> <p>100</p> <p>1 0</p> <p>1</p> <p>0</p> <p>V1 = X Y + X Y Bng CacNo cho V2 :</p> <p>c ba</p> <p>Created by AnhSon</p> <p>Page 11</p> <p>HBK H NI n iu khin logic</p> <p>00 x 0 0 0 0 1 1 0</p> <p>00 1</p> <p>y 011 0 1 1 0</p> <p>010</p> <p>110</p> <p>111</p> <p>101</p> <p>100</p> <p>0 1</p> <p>0</p> <p>V2 = X Y 2,Hnh trnh ngcdeNV1V2= vora</p> <p>Graph trng thi0000010101001010111000110</p> <p>1d e</p> <p>2</p> <p>3</p> <p>4</p> <p>5</p> <p>tt 1 2 3 4 5 Bng M2:</p> <p>00 (1) 3 (3) 5 (5)</p> <p>01</p> <p>11</p> <p>10 2 (2)</p> <p>N 0 1 1 1 1</p> <p>V1 0 0 0 1 1</p> <p>V3 0 1 1 0 0</p> <p>4 (4)</p> <p>d eCreated by AnhSon Page 12</p> <p>HBK H NI n iu khin logic</p> <p>Tt 1 2+3 4+5</p> <p>N 0 1 1</p> <p>00 (1) (3) (5)</p> <p>01</p> <p>11 V1 0 0 1</p> <p>10 2 (2)</p> <p>4 (4)</p> <p>Chn bin trung gian l N, V1 Ba CacNo cho bin N:</p> <p>d e</p> <p>Tt 1</p> <p>N 0</p> <p>00 0</p> <p>01</p> <p>11 V1 0</p> <p>10 1</p> <p>2+3 4+5</p> <p>1 1</p> <p>1 1</p> <p>1 1</p> <p>0 1</p> <p>1</p> <p>N= N +d</p> <p>Created by AnhSon</p> <p>Page 13</p> <p>HBK H NI n iu khin logic</p> <p>Ba CacNo cho bin V1:</p> <p>d e</p> <p>Tt 1</p> <p>N 0</p> <p>00 0</p> <p>01</p> <p>11 V1 0</p> <p>10 0</p> <p>2+3 4+5</p> <p>1 1</p> <p>0 1</p> <p>1 1</p> <p>0 1</p> <p>0</p> <p>V1 = e + d V1 N Ba CacNo cho bin V3:</p> <p>d e</p> <p>Tt 1</p> <p>N 0</p> <p>00 0</p> <p>01</p> <p>11 V1 0</p> <p>10</p> <p>2+3 4+5</p> <p>1 1</p> <p>1 0 0</p> <p>0 1</p> <p>1</p> <p>V3 = d + N V1</p> <p>Created by AnhSon</p> <p>Page 14</p> <p>HBK H NI n iu khin logic</p> <p>Tng hp h thng ta dng phng php xp chng cc tn hiu ra bi ton thun v bi ton nghch ta c:</p> <p>N= N +d X=X+b Y=cY+a T= X+ Y</p> <p>V1 = Y X + X Y + e + d V1 N V2 = X Y V3 = d + N V1 Tuy nhin 2 s thun v nghch cha c s lin h nn ta hiu chnh li : Ta ch thay i X , N v T X=(X+b ) N N= ( N +d ) Y T T=(X+Y+T d) N</p> <p>Created by AnhSon</p> <p>Page 15</p> <p>HBK H NI n iu khin logic</p> <p>--------------------------------*--------------*-------------*-----------------------------------</p> <p>CHNG III: XY DNG S NGUYN LI,Mch nguyn l T hm iu khin xy dng t chng II ta c mch nguyn l sau :</p> <p>Created by AnhSon</p> <p>Page 16</p> <p>HBK H NI n iu khin logic</p> <p>Created by AnhSon</p> <p>Page 17</p> <p>HBK H NI n iu khin logic</p> <p>II, Xy dng mch iu khin Qu trnh tng hp mch iu khin chng I a ra c mt cu trc iu khin v c bn p ng c yu cu ca cng ngh. Tuy vy, nu em ngay cu trc ny vo lp rp th thc t l khng p ng c cc yu cu v bo v cc s c ( ngn mch, qu ti ngn hn, di hn ). hon thin mch iu khin ta s b sung thm vo cu trc iu khin c mt s mch ph tr phc v mc ch bo v v nng cao tin cy ca s . 1.Cc mch bo va.Bo v ngn mch.</p> <p>Ta bit dng ngn mch ln hn nhiu ln dng in bnh thng, gy cc tc hi to ln l lm hng dng c, cc thit b iu khin. Yu cu ca thit b bo v l phi tc ng ct nhanh h thng ra khi li in trc khi dng ngn mch kp ph hu thit b in. C th thc hin bo v ngn mch bng cu ch hoc r-le dng cc i tc ng nhanh hoc ptmt. i vi trng hp ng c ko ti l bn my chuyn ng thun nghch hot ng theo ch chu k ( ch ngn hn lp li) ta c th dng r-le dng cc i va lm nhim v bo v ngn mch &amp; va lm nhim v bo v s c qu ti xung kch.b.Bo v qu ti ngn hn xung kch.</p> <p>Hin tng qu ti xung kch tuy tn ti trong thi gian ngn, tc dng ph hu v nhit l th yu, nhng dng xung kch ln c th gy nn lc in ng ln, lm h hng cc b phn ca my nh cc bi dy, c gp, lm hng c cu c kh c lin quan khc. bo v ct trong trng hp ny ta dng r-le dng cc i hay ptmt c c cu tc ng nhanh.</p> <p>Created by AnhSon</p> <p>Page 18</p> <p>HBK H NI n iu khin logic</p> <p>Nh cp trn, ta s s dng r-le dng cc i va bo v ngn mch va bo v qu ti xung kch.c.Bo v qu ti di hn.</p> <p>S c qu ti di hn s gy pht nng lm hng cch in hoc lm gim tui th ca kh c in. bo v my in ta c th dng r-le nhit v cu chd.Bo v cc tiu v bo v im khng.</p> <p>Khi in p li b mt hoc gim thp di tr s cho php, th phi ct mi lin h gia ngun v ng c, phng trng hp khi c li in th h thng khng th hot ng khng theo mun ca ngi vn hnh. thc hin bo v cc tiu hoc bo v im khng, ta s dng r-le in p thp kiu in t. Cun dy ca r-le c mc vo in p li, cn tip im ca n ng ngun cung cp cho mch iu khin ng c.e.Bo v lin ng.</p> <p>Trong trng hp ng c ko ti l ng c 3 pha, r to dy qun th vic s dng khu lin ng (c &amp; in) trnh c ngn mch 3 pha trong mch iu khin o th t pha. 2.Xy dng s mch iu khin T s cu trc ta c quy c cc k hiu nh sau: + a _ thay th bng cng tc hnh trnh 1KH. + b _ thay th bng cng tc hnh trnh 2KH. + c _ thay th bng cng tc hnh trnh 3KH. + d _ thay th bng cng tc hnh trnh 4KH. + e _ thay th bng cng tc t hnh trnh 5KH + X &amp;Y _ thay th bng cc r-le trung gian 1RTr v 2RTr.</p> <p>Created by AnhSon</p> <p>Page 19</p> <p>HBK H NI n iu khin logic</p> <p>+ V1, V2, V3 _ thay th bng cc cng tc t gia tc 1G, 2G, 3G iu khin tc lm vic ca ng c. + T, N _ thay th bng cc cng tc t ng dy iu kin cc hnh trnh thun &amp; ngc (T, N) . T phn tch s cn thit ca vic bo v cc s c trn, ta s s dng thm cc kh c ph tr gm + Mt r-le in p thp RA lm nhim v bo v cc tiu v im khng. + R-le dng cc i 1RM, 2RM, 3RM va lm nhim v bo v ngn mch li va lm nhim v bo v qu ti xung kch. +R-le nhit 1RN v 2RN dng bo v qu ti di hn cho ng c + Ton b h thng c bo v bng cu ch 1CC v 2CC Ngoi ra, dng thm cc nt n m my M, nt n dng my D &amp; nt n xc lp trng thi ban u G, nt reset R ,cu dao C + Ngoi ra cn c R-le thi gian 1Rth v 2Rth S mch iu khin v ng lc:</p> <p>Created by AnhSon</p> <p>Page 20</p> <p>HBK H NI n iu khin logic</p> <p>Created by AnhSon</p> <p>Page 21</p> <p>HBK H NI n iu khin logic</p> <p>3.M t hot ng ca s Ban u khi cp in cho h thng hot ng ,ta n G cp in cho mch iu khin. +Ta n M :Lc ny 1KH ang c in nn lm cho 2RTR ,T,1G,2RTH c in. Dng in chy theo s 5-1KH-27-2RTR-2 (cp in cho 2RTR) 5-M-29-2RTR-35-N-37-T-2 (cp in cho T) 5-1RTR-49-2RTR-51-1G-2 (cp in cho 1G) 5-T-19-2RTH-2(cp in cho 2RTH) + Nh M :2RTR ,T,1G ,2RTH vn c in 5-3KH-25-2RTR-27-2RTR-2 (2RTR duy tr in ) 5-4KH-39-T-35-N-37-T-2 (T duy tr in) 5-1RTR-49-2RTR-51-1G-2 (1G duy tr ) 5-T-19-2RTH-2( 2RTH duy tr ) +2KH tc ng :1RTR,2RTR,T,2G,2RTH c in; 1G mt in 5-2KH-21-N-23-1RTR-2 (cp in cho 1RTR) 5-3KH-25-2RTR-27-2RTR-2 (2RTR vn duy tr) 5-4KH-39-T-35-N-37-T-2 (T vn duy tr ) 5-1RTR-59-2RTR-61-2G-2 (cp in cho 2G) 5-T-19-2RTH-2( 2RTH duy tr) + 2KH ngng tc ng :1RTR ,2RTR, T, 2G ,2RTH vn duy tr 5-1RTR-21-N-23-1RTR-2 (duy tr cho 1RTR) 5-3KH-25-2RTR-27-2RTR-2(2RTR vn duy tr) 5-4KH-39-T-35-N-37-T-2(T vn duy tr )</p> <p>Created by AnhSon</p> <p>Page 22</p> <p>HBK H NI n iu khin logic</p> <p>5-1RTR-59-2RTR-61-2G-2(duy tr 2G) 5-T-19-2RTH-2( 2RTH duy tr) + 3KH tc ng :1RTR ,T,1G,2RTH c in; 2RTR ,2G mt in 5-1RTR-21-N-23-1RTR-2 (duy tr 1RTR) 5-4KH-39-T-35-N-37-T-2 (duy tr T) 5-1RTR-53-2RTR-51-1G-2 (cp in cho 1G) 5-T-19-2RTH-2( 2RTH duy tr) + 3KH ngng tc ng : 1RTR ,T,1G ,2RTH vn duy tr 5-1RTR-21-N-23-1RTR (duy tr 1RTR) 5-4KH-39-T-35-N-37-T-2 (duy tr T) 5-1RTR-53-2RTR-51-1G-2 (duy tr 1G) 5-T-19-2RTH-2( 2RTH duy tr) + 4KH tc ng :N ,3G c in ; T,1RTR,1G,2RTH,2RTR mt in 5-4KH-41-2RTR-43-T-45-2RTH-47-N-2 (cp in cho N) 5-4KH-63-3G-2 (cp in cho 3G) + 4KH ngng tc ng : N,3G vn duy tr 5-N-41-2RTR-43-T-45-2RTH-47-N-2 (duy tr N) 5-N-65-1G-63-3G-2 (duy tr 3G) + 5KH tc ng : N,1G c in ;3G mt in 5-N-41-2RTR-43-T-45-2RTH-47-N-2(duy tr N) 5-5KH-51-1G-2( cp in cho 1G) + 5KH ngng tc ng : N,1G vn duy tr 5-N-41-2RTR-43-T-45-2RTH-47-N-2(duy tr N) 5-4KH-55-1G-57-N-51-1G-2 (duy tr 1G)Created by AnhSon Page 23</p> <p>HBK H NI n iu khin logic</p> <p>+1KH tc ng :N,1G mt in ;2RTR c in Khi n 1KH tc l u hnh trnh th 2RTR c in s gip ngt in cho N v 1G 5-1KH-27-2RTR-2 (cp in cho 2RTR) Lc ny ng c s dng quay. tip tc ta n M cho ng c tip tc chu trnh Mt s chc nng ph + Dng khn cp v reset : khi mun dng khn cp ta n nt D ,mch iu khin s mt in .ng c ngng quay.Khi mun ng c chy li ta n nt G v sau l n nt R ,ng c s t ng chy theo hnh trnh ngc v u chu trnh + trnh b chp pha nn ta b tr role thi gian ng chm 2RTH m bo khi T c ngt hon ton mi ng N.V th ta phi b tr cm bin d hoc cng tc hnh trnh 4KH sao cho thi gian tc ng ( d=1 ,4KH ng) ko di ph hp vi thi gian tr ca r-le 2RTH + chc nng bo v ca mch: Bo v ngn mch : 3RM Bo v qu ti ngn hn (qu ti xung): 1RM,2RM Bo v qu ti di hn: 1RN,2RN Bo v ip p thp :RA Bo v lin ng : 2RTH Bo v mt pha : 1RM,2RM,3RM Bo v tng th : Cu ch 1CC , 2CC</p> <p>---------------------------------*--------------*-------------*----------------------------------Created by AnhSon Page 24</p> <p>HBK H NI n iu khin logic</p> <p>CHNG IV : CHN THIT BI,Chn ng c Ta chn ng c xoay chiu roto dy qun vi cc thng s sau : Hng sn xut : VIHEM 2</p> <p>Tn m : KQ170S6 P= 7.5kw N dm =900 v/p U Y/ (stato) =220/380 v I Y/ (stato ) = 20.5/35.5 A I roto = 32A U roto =194v</p> <p>Created by AnhSon</p> <p>Page 25</p> <p>HBK H NI n iu khin logic</p> <p>Cosm=0.88 =0.88 Imm/Im =5 II ,Chn thit b mch ng lc 1, Chn cu dao v cu ch Ta chn cu dao ca cng ty PHANAN</p> <p>Cu dao: Udm=600V Idm=250A</p> <p>Cu ch : Umax=600V Imax=60A Kch thc (di - rng - cao ) ln nht khi ng ct: 400-250-100 mm</p> <p>2,Chn cc r-le dng cc i:Created by AnhSon Page 26</p> <p>HBK H NI n iu khin logic</p> <p>+ R-le 3RM c tc dng bo v ngn mch, nn chn loi c : Itv 1,2.Ik =1,2 5 20.5 =123 A. Nn ta chn r-le : RM1 XA0631 do c sn xut l loi r le khng t phc hi vi phm vi ci t (setting range) l : 50-140A Im = 29.140A Kch thc :110-80-123 mm</p> <p>+ Cc r-le 1R...</p>