Key challenges and new trends in battery research ? Key challenges and new trends in battery research.

  • Published on
    29-Jul-2018

  • View
    212

  • Download
    0

Transcript

AmiensAmiensUS DOE EFRC Summit and ForumWashington DCRenaissance Penn Quarter HotelMay 25th-27th, 2011Jean Marie TARASCONKey challenges and new trends inbattery researchOutline Personal view of the future of batteriesPresent ongoing research activities to tackle themConclusions ?Flash recall on why energy storage EU and French research structuring initiatives Rapid assessement of todays state of the art in Li-ion batterySpot/highlight present limitations and upcoming issues (recycling)Mention/discuss a few chemistries beyond Li-ion A few comments beyond sciencePHOTO-SYNTHESISBIOMASS-CHOH-CO 2O2O2SUNEnergyENERGYH2O-CHOH-COMBUSTION7 kWh/kg4.3 kWh/kgh6 CO2 + 6 H2OC8H12O8 + 6 O2H2OCO2O2O2PHOTO-SYNTHESISBIOMASS-CHOH-CO 2O2O2SUNEnergyENERGYH2O-CHOH-COMBUSTION7 kWh/kg4.3 kWh/kgh6 CO2 + 6 H2OC8H12O8 + 6 O26 CO2 + 6 H2OC8H12O8 + 6 O2H2OCO2O2O2FOSSIL FUELS13 kWh/kgMillionsof years95 MBa/day3.7 milliards1.35 tep/hab20001970 203051017.7Consommation Mondiale Annuelle(109 tep)8.2 milliards2.2 tep/hab6 milliards1.7 tep/hab6 892 760 01213:00 aujourdhui 3.7 milliards1.35 tep/hab20001970 203051017.7Consommation Mondiale Annuelle(109 tep)8.2 milliards2.2 tep/hab6 milliards1.7 tep/hab6 892 760 01213:00 aujourdhui 20001970 203051017.7Consommation Mondiale Annuelle(109 tep)8.2 milliards2.2 tep/hab6 milliards1.7 tep/hab6 892 760 01213:00 aujourdhui 3.7 Billions1.35 tep/habWorld AnnualConsumption108 tep6 Billions1.7 tep/hab8.2 Billions2.2 tep/hab3.7 milliards1.35 tep/hab20001970 203051017.7Consommation Mondiale Annuelle(109 tep)8.2 milliards2.2 tep/hab6 milliards1.7 tep/hab6 892 760 01213:00 aujourdhui 3.7 milliards1.35 tep/hab20001970 203051017.7Consommation Mondiale Annuelle(109 tep)8.2 milliards2.2 tep/hab6 milliards1.7 tep/hab6 892 760 01213:00 aujourdhui 20001970 203051017.7Consommation Mondiale Annuelle(109 tep)8.2 milliards2.2 tep/hab6 milliards1.7 tep/hab6 892 760 01213:00 aujourdhui 3.7 Billions1.35 tep/habWorld AnnualConsumption108 tep6 Billions1.7 tep/hab8.2 Billions2.2 tep/hab14 TW28 TWRenewable EnergiesRenewable EnergiesRenewable EnergiesWHY ENERGY STORAGE ? Billions de barils /anAnnes Dcouvertes venirConsommationRserves dcouvertesBillions de barils /anAnnes Dcouvertes venirConsommationRserves dcouvertesgapConsumptionDiscoveryProjected discoveriesyearsEnergy storage:Another challenge of the 21st centuryChemical ElectricTo improve-create new energy storage technologiesWind Solar OceansTo better handle therenewable energy resources of our planetMWh kWhElectricTo favour thedevelopment of electric vehiclesWind Solar OceansTo better handle therenewable energy resources of our planetMWh kWhElectricTo favour thedevelopment of electric vehiclesTo develop better electrochemical energy storage devicesBatteriesRestructuring of the scientific and technological landscape via the creation of new federative toolsMaterialsMaterials for for EnergyEnergy Storage & ConversionStorage & ConversionALISTOREEducation Programmehttp://www.u-picardie.fr/mundus_MESCMaterialsMaterials for for EnergyEnergy Storage & ConversionStorage & ConversionALISTOREEducation Programmehttp://www.u-picardie.fr/mundus_MESCMaterialsMaterials for for EnergyEnergy Storage & ConversionStorage & ConversionALISTOREEducation Programmehttp://www.u-picardie.fr/mundus_MESChttp://www.u-picardie.fr/mundus_MESCEIR EIR ELITE (75 k/an) SILVER (25 k/an)114EDFSaftArkemaUmicoreSolvionicHoneywellSolvayESATOTALBASFSasolCEARenaultVolkswagenRobert BoschAeronautic &Space usersPVs usersCar makers MaterialMakersBatteryMakersCell-phonemakers15 members15 membersBusiness of industrial club membersBusiness of industrial club membersALISTOREALISTORE--ERI Industrial Club compositionERI Industrial Club compositionELITE (75 k/an) SILVER (25 k/an)114EDFSaftArkemaUmicoreSolvionicHoneywellSolvayESATOTALBASFSasolCEARenaultVolkswagenRobert BoschELITE (75 k/an) SILVER (25 k/an)114ELITE (75 k/an) SILVER (25 k/an)114EDFSaftArkemaUmicoreSolvionicHoneywellSolvayESATOTALBASFSasolCEARenaultVolkswagenRobert BoschAeronautic &Space usersPVs usersCar makers MaterialMakersBatteryMakersCell-phonemakers15 members15 membersBusiness of industrial club membersBusiness of industrial club membersALISTOREALISTORE--ERI Industrial Club compositionERI Industrial Club composition18 European Research Labs_European Initiative: ALISTORE-ERILaunched in 2004 (FP6) with the incorporation of industries in 2008The Research/Innovation/EducationTriangle Partenaires IndustrielsManagement/DirectionResearch CenterCRA CRTI University + CNRS labs Pre-transfert unitsResearchers + engineersBordeaux, Nantes, Montpellier, Toulouse, Orleans, Pau, AmiensMarseille,Paris-tech, .Technology Research and integration Center Nationnal Labs (EPICs )CEA, INERIS, IFP, - Industrialisation platforms- Safety platform- BMS platform- Testing platformIndustrial Club(14 Members)CIR hR hMaillons ncessaires pour lintgration rapide en un produit fini.Intgrer et fdrer tous les acteursTo ensure a continuum from research to development viaprototyping and then a quick transfer to our industriesMaillons ncessaires pour lintgration rapide en un produit fini.Intgrer et fdrer tous les acteursTo ensure a continuum from research to development viaprototyping and then a quick transfer to our industriesResearch and Technology National Network on Electrochemical Energy Storage (RS2E)(Created July 2010)Primary cellsRechargeable(Batteries)Li / SCuOCuSCuOCu4O(PO4)2SolidcathodesI2 SO2LiquidcathodesSOCl2CFxMnO2Ag2CrO4Ag2CrO4CrOxLi/I2Li/SOCl2Li/SO2Li/MnO2 Li/FeS2Li/CfxBi2Pb2O5Bi2O3FeS2Ag2V4O11Composs dinsertionTiS2Electrolyte polymrePEOChlorides, sulfides, fluoridesPlastifiantsV6O13NbSe3NiPS3MoS2MnO2LiCoO2LiNiO2Li/PEO/VOxLi ionLiCxLiCx/LiCoO2LiMn2O4LiNCALiNMCLiFePO4194919491960196019701970198019801990199020062006Jan Hajek?Genealogic tree for Li-based batteriesFrom . Broussely (adapted)Li-airLi-airLi-airLi-airLi-airLi-airVNon-aqueous electrolyte Cathode AnodeLi+Li+3.0 V+LiMnLiMn22OO444.2- 5 VLiCoOLiCoO22--NMCNMC4.2- 4.6 VLiFeSOLiFeSO44FF3.6 - 4 VLiLi22FeSiOFeSiO44LiLiLiFePOLiFePO443.45 V-acTiO2(B)TiO2(B)1.8 VLiLi44TiTi55OO12121.5 VLiLixxSiSiyy0.4 VLiLixxCC660.2 VThe Li-ion technology:A versatile technology in terms of potentialThe Li-ion technology:a versatile technology in terms of powerBatterySupercapacitorsENERGY DENSITY (Wh/kg) AUTONOMY SPECIFIC POWER (W/kg) SPEED# ## ## #The Li-ion technology: a large potential market WhWh kWh kWh MWhMWh WhWh kWh kWh MWhMWh 2 MW Li-ion storageEVs packDifferent energy domainsDifferent materialsDifferent safety and cost aspects186505-10Wh 30-100kWh210Wh/kg625Wh/lIs it sufficient for EVs applications ?Todays state of the art performancefor the Li-ion technologyForesightForesightHigherHigher RateRateHigherHigher EnergyEnergyLowerLower CostCostHigherHigher SafetySafetyForesightForesightHigherHigher RateRateHigherHigher EnergyEnergyLowerLower CostCostHigherHigher SafetySafetyChallenges Facing batteries for EVsapplicationsLowerLower CostCostLowerLower CostCostSustainabilitySustainabilityMaterials/processes having the minimum environmental footprint and lowest possible life cycle cost500 /kWh130Wh/kg/ 2 x2x2*Source:Nedo (2009) 500 /kWh130Wh/kg/ 2 x2Energyx2*Source:Nedo (2009) CostDurabilityThe Li-ion batteries: Sustainable aspectsEnergy-demanding step(e.g. high CO2 released10 Billionbatteries peryear in 2010: compulsoryrecyclingOresextractionBattery +_Ashes withOresextractionElectrode elaboration via HT processesRecyclingPurification+_metal contents Battery assemblyThermal treatmentThe way we are making batteries today:Energy-demanding stepEnergy needed 287 kWhFabrication of a battery of 1 kWhCO2 rejected: 110 kgNeed to make more sustainable and greener Li-ion batteriesLife Cycle Analysis of Large-size Li-ion secondary batteries, K. Ishihara et al. (2009)MoleculesextractionCO2 +_BiomasseAssemblingRecycling2 +_Elaboration of electrochemically active materials via thegreen chemistry conceptsBiomassIdeal SituationRoutes followed Elaboration of inorganic materials via eco-efficient processes Use of organic materials as renewable Li electrodes Other chemistries : Na-ionTomorrows needs and challenges:Develop sustainable Li-ion batteriesCeramic process Solvothermalprocess Hydrothermalprocess Ionothermalprocess Bio-mineralizationprocessBulk NanoLower temperatures Economy of atoms700C 120C 180CqNN NNTFSI -NN NNTFSI -qNN NNTFSI -NN NNTFSI -200C 60CSolution reactionsSolid statereactionsTowards energy saving processesfor materials preparationIonothermal approach to the synthesis of inorganic compoundsN. Recham, M. Armand and J-M. Tarascon Patent Filed N: 2110141 (2008)Ionic liquidsMolten salts at ambient temperatureSolvent recycling : classic organic route washing CH2Cl2-centrifugationTime= 5hTime= 5hTime= 5hFlaskSynthesis at ambient pressure up toT= 300-350CCCCCAutoclaveNN NNTFSI -NN NNTFSI -NN NNTFSI -NN NNTFSI -No vapour tensionThermal stability > 300CNon flammableGood solvent for numerous salts and polymerscations-anions combinations (estimated at 15000, 1000 realized)1 5 2 0 2 5 3 0 3 5 4 01 5 2 0 2 5 3 0 3 5 4 02, CoK ?? ? ?????(200)(101)(210) (011)(111)(211)(301)1h3h5h7h24hIntensityLiFePO4 FeC2O4.2H2O Li4P2O7 Fe3O4 LiPO31h24h5h2 Co K24 hrs7 hrs5 hrs3 hrs1 hrsmm1100-200nmmm1100-200nmN. Recham, L. Dupont, D. Larcher, M. Armand, and J-M. Tarascon Chemistry of Materials 21(6), (2009), 1096-1107.LiH2PO4 + FeC2O4.2H2OLiFePO4 + 3 H2O + CO2EMI-TFSI220-250CIonothermal synthesis of LiFePO4: The case example Ionic liquids as reacting media: Beneficial Aspects Synthesis of numerous known phases at T =200C (ceramic routes T 700C)Na2Fe(Mn)PO4FLiFe(Mn)PO4FLiFePO4Li2FeSiO4Changing and adjusting the size and morphology of the powdersNN+NF3CO2SSO2CF3-NN+CNNF3CO2SSO2CF3-100-200nm100 200nm100-200nm100 200nmNew electrochemical active materials Via ionothermal synthesisNew family of Fluorosulfates AMSO4F, A= Li, Na; M =Fe, Ni, CoN. Recham, J-M. Tarascon et al.: Nat Mater. 2010, 9(1), 68-75. 22.533.544.50 0.2 0.4 0.6 0.8 1potential vs. Li+ /Lix in LixFeSO4F608010 012 014 016 00 10 20 30 40 50Capacity (mAh/g) N um be r o f c yc le3.6 V140 mAh/gUnstable: Decompose for T> 320CSoluble in water285C, 24hMSO4. H2O + LiF LiMSO4FEMI-TFSI285C, 24hMSO4. H2O + LiF LiMSO4FEMI-TFSISerious contender to LiFePO4P. Barpanda, J-M. Tarascon et al.: Angewendte . 2011, 9(1), 68-75. LiFeSO4F LiZnSO4F LiMnSO4FTavorite TripliteSillimaniteP-1 Pnma C2/cFluorosulfates LiMSO4F: a true challenge for theoristsLiFeSO4F LiZnSO4F LiMnSO4FTavorite TripliteSillimaniteP-1 Pnma C2/cWhy different structures depending on M ?DFT + U calculations give little thermodynamic differences; less than kBT??.Make theory more predictive: To reach the point where new compounds together with their properties can be predictedKey challenge Unstable: Decomposes for T> 320CTowards the eco-efficient elaborationof electrode materials: a few tendenciesReturn to life chemistry To develop bio-assisted, bio-inspired or bio-mimetic synthesis approaches to elaborate known or new inorganic materials Fe2O3Can we make electrode materials at toom temperature ?From bacteria to electrode materialsbio-mineralization approachBacillus pasteurii Urease kinetically controls urea hydrolysisCollaboration: F. Guyot (Universit de Paris VI)LiFePO4 synthesisT = 60CH2N NH2OLiH2PO4 + + FeSO4.7H2O LiFePO4 + (NH4)2SO450 nm02010-100011-112-1010dd8 hours50 nmFabrication of Genetically Engineered Lithium Ion BatteriesElectrodes from genetically modified viruses+-aa--FePOFePO44/CNT/CNTCoCo33OO44/Au/AuModifiedM13 virusModifiedM13 virus+-aa--FePOFePO44/CNT/CNTCoCo33OO44/Au/AuModifiedM13 virusModifiedM13 virusaa--FePOFePO44/CNT/CNTCoCo33OO44/Au/AuModifiedM13 virusModifiedM13 virusModifiedM13 virusModifiedM13 virusModifiedM13 virusViruses are Used as building blocks,templatesGrowth of nano-compositeconducting electrodesBio-mineralization or virus engineering offers a new approach to design sustainable electrodesJ-M. Tarascon; Nature nanotechnology, 4-341-342(2009)Nam, K.T. et al. Science. 312, 885-888 (2009).InorganicelectrodesPossibility of using organic electrodesMineral Further inspiration from life chemistryLooking for electrochemically active organic electrodesM2C6O6 (with M = Li, Na, K, Rb and Cs)Get inspiration from the old chemistry on oxocarbonsOOOOLiOLiOOLiOLiOOOLiOLiOOOOLiOLiOOxocarbones2CroconateSquarateDeltateRhodizonate2. West, R. & Powell, D. L. New aromatic anions. III. Molecular orbital calculations on oxyganated anions. J. Am. Chem. Soc., 85, 2577-2579 (1963).1. N. Ravet, C. Michot, M. Armand, Mater. Res. Soc. Symp. Proc., 496, 263-173 (1998). 00.511.522.533.542 2.5 3 3.5 4 4.5 5 5.5 6Potential(V vs. Li/Li+ )x in Li2+xC6O64 injected e- / unit formula00.511.522.533.542 2.5 3 3.5 4 4.5 5 5.5 6Potential(V vs. Li/Li+ )x in Li2+xC6O64 injected e- / unit formulamyo-inositol Lithium RhodizonateOOOOL iOL iO. 2 H 2 OO HO HO HH OH OH O1 ) H N O 32 ) O 2 , , Acet. de LiHow to make Li2C6O6 from natural resources ?Preisler, P. W. & Berger, J. Am. Chem. Soc., 64, 67-69 (1942).8 % of the dry weight of corn-steeping liquor6OHOHOHHOHOHOOPO3H2OPO3H2OPO3H2H2O3POH2O3POH2O3POmyo-InositolChemical/enzymaticdiphosphorylationPhytic-acidFrombiomassto active electrode(25% yield)The field of organic chemistry:a fertile domain for sustainable electrodesFlexibility of the redox potential according to the nature and environment of the electro-active centre02100 300200 400 50013 CarbonylemAh/gPotentiel (V vs. Li)OOOLiOLiLiOLiOOOOLiOLiLiOLiOEsterOOOLiLiOOOOLiLiOCarboxyleO-O OO- Li+Li+O-OO-O-O OO-OO-O- Li+Li++_OOOOLiOLiO OOOOLiOLiOChem sus chem 2008JACS 2009JACS 2010Nat. Mat. 2009Chem. Com. 2011Jr. Mat.Chem 2011reducingoxidizingaElaboration of the1st organic and bio-compatible Li-ion battery Good thermal stabilityGood cycling behaviourPoor performancex in00,511,522,533,542 2,5 3 3,5Potential/V vs. Li 6C6O6xC6O6CycledcellCycledcellLi2C6O6/Li6C6O6 Ion cellMore ecological systemsNew conceptMain remaining issue ??Find highly oxidizing Li-based organic electrodes to be used as Li reservoirLi2C6O6 2Li+ + 2e- + C6O6 Li2C6O6 2Li+ + 2e- + C6O6 Li2C6O6 2Li+ + 2e- + C0/CO2 February 3, 2009Peak Lithium: Will Supply Fears Drive Alternative Batteries?February 3, 2009Peak Lithium: Will Supply Fears Drive Alternative Batteries?Tuesday, February 3, 2009Bolivia: The Saudi Arabia of lithium?Tuesday, February 3, 2009Bolivia: The Saudi Arabia of lithium?Key numbers:160 000 tons Li2CO3 annual production20-25% for battery sector (>32 000 tons)Roughly 0.5 kg of Li2CO3 per 1kWh batterySimple estimation if:10 % of the 60 million cars are pure EVs(25kWh): 75 000 tons : half of todays total productionLi Resources (13 M of T)Mineral: Salars: See water:0.2 ppmIssues in Lithium resourcesSustainabilityBEST Spring, 37-41(2009) US. Geological survey (2007) Under the microscope, MIR (2008)A few alternativesTo promote recyclingSimple considerations toproduce 1 Ton of Lithium250 T 750 T 28 T To develop Li-recovery processes Hydro-metallurgy Higher availability of precursorsPost-lithium chemistry:the sodium alternative ?Na-3.04 -2.71Li3860 1166Electrode potential (V) Electrode capacity mAh/g)Na-3.04 -2.71Li3860 1166Electrode potential (V) Electrode capacity mAh/g)Na-3.04 -2.71Li3860 1166Electrode potential (V) Electrode capacity mAh/g)Li1s22s1Lithium6.94130.534180.50.98 Na2s23s1Sodium23.941110.97980.9 Li1s22s1Lithium6.94130.534180.50.98 Na2s23s1Sodium23.941110.97980.9Na in Earth: 103 ppmNa in Sea : 105 ppm Lower performance than Li-Ion Potentially cheaper than Lithium chemistryReincarnation chemistry of materials will become anessential part of future battery businessFrom Li-ion to Na-ion batteriesStill a material problemCapacit (mAh/g)0.52.01.04.51.52.54.03.03.510050 150 200 250Potentiel (V vs. Na+/Na)PositivesNgativesNaVPO4FNa0.44MnO2Na0.6 CoO2Na0.6 Mo2O4 Nax(MoO2)2 P2O7NaxCNa2FePO4FNaFeSO4FV2O5MoO3NaTi2(PO4)3Na3V2(PO4)3MoSe2Na2C8O4H4aKey Challenge: To find new negative electrode materials ?11 , 522 , 533 , 544 , 51 1 , 2 1 , 4 1 , 6 1 , 8 2Potential (V) vs Na+/Nax i n N axF e P O4F3.1 VB.L. Ellis , L.F. Nazar et al. .,,Nature Materials 6, 749 753, (2007)1 , 21 , 41 , 61 , 822 , 22 , 42 , 60 , 5 0 , 6 0 , 7 0 , 8 0 , 9 1Potential (V vs. Na+/Na)x i n N axV O2 ( P ) 1.6 VP. Rozier, J.M. Tarascon et al. (submitted)SustainabilityyPotentialNegativePositiveEnergy aspectsCapacityPotential (V vs. Li+ /Li) EnergyEnergy= Capacity x PotentialIncreased energy densityabc1.75 LiLi2MnSiO4 60CIncreased capacity (2e- per 3d-metal?)Increased potential V (5 V ?)Voltagex in Li2-xCoPO4F6V5V4VLiCaCoF6???Co, Ni)PO4n1.5Ni0.5]O4LiMnPO4LiMn2O4Ni, Me)O26V5V4VLiCaCoF6???Co, Ni)PO4n1.5Ni0.5]O4LiMnPO4LiMn2O4Ni, Me)O26V5V4VLiCaCoF6???Co, Ni)PO4n1.5Ni0.5]O4LiMnPO4LiMn2O4Ni, Me)O26V5V4VLiCaCoF6???Co, Ni)PO4n1.5Ni0.5]O4LiMnPO4LiMn2O4Ni, Me)O2ENERGY Short and mid-term developmentsThermal vs. Electrical vehicles 1 liter of gaz2300Wh/Kg1kg of Li-ion 150Wh/KgA factor 15 gap How to close the gap between Octane vs. Li-ion?ENERGYENERGYWhich chemistries are around the corner ???(Revisiting Li-S and Metal- air systems and more so the Li-air system)Li-S Li-O22Li+ + 2e- + S Li2S (E= 2,27 V )Energy density = 3802 Wh/kg2Li ++ 2e- + O2 Li2O2 (E= 3,14 V) Energy density = 5259 Wh/kgnatural, abundant, cheapfeedstock380 Wh/kgFactor of 10180 Wh/kg 0,5Li+ + 0,5e- + Li0,5CoO2 LiCoO2 Energy density = 550 Wh/kgx 3 500 Wh/kgFactor of 10What are these attractive technologies?What can we expect ? The Li-oxygen batteryC_MnO2C_MnO2Progresses have been achieved, but major problems remain ..Nano MnO21000mAh/gCapacity in mAhg-1 (carbon) Voltage (volts vs. Li)Collaboration avec P. Bruce: University of St-Andrews, Scottland0.7 VShao-Horn JACS_132_12170_2010:Discharge Reaction :Discharge Reaction :2 Li2 Li++ + 2 e+ 2 e-- + O+ O22 LiLi22OO22O2 + e- O2-O2 + e- O2-Li-air _ the numerous challenges To reduce the voltage gap To master electrode porosityCathodeAnode Inherits problems of Li dendritesElectrolyte Master the O2.- reactivity O2 solubility, diffusivityCommercial rechargeable Li-air cells have still a long way to go either at the research or applied levels: Be careful PotentialCapacityAnodes + Cathode + Electrolyte problems High fading + poor rate capabilityWorldwide Estimated Global installedCapacity energy storage:Source : www.storagealliance.orgTOTAL: 125,520MW98%Batteries:98%Pumpedhydro 451 MW1.5% of the consumption1980 1990 2000 2010VehicleVehicleLiLi--ion (Niion (Ni--Co, Co, MnMn, Ni, Ni--MnMn Billions of $Billions of $S tationaryS tationaryNaSNaS , Zn, Zn--Br, ZnBr, Zn--C lC l, R F Ni, R F Ni--MH, LiMH, Li--ion ion billions of $billions of $S tationaryS tationaryNaSNaS , Zn, Zn--Br, ZnBr, Zn--C lC l, R F Ni, R F Ni--MH, LiMH, Li--ion ion billions of $billions of $Stationary market will expand Great opportunities for innovative Redox-Flow chemistries NaS is stellar Li-ion is enteringMass storage energy (MW) :Could Li-ion play a role ?SonySony1990 2005ConversionCathodes (nano)20151995Energy densitySony250 Wh/kg, 800Wh/lA1232007??????2004LiMnOmiEV / C0 / Lion2 MW Li-ion batteryCathodesorganiquesFutur FuturLi-airFuturx 2 ou 3Na-ionchemistryLi-SFuturSustainable developmenteOutlook for Li-ion batteries over the next 20-30 yearsConclusions: Beyond scientific challenges ..Research funding worldwide (EVs + Batteries) Is it really a problem of money ?More a problem of managing/structuring for efficient integrationbetween science and technology Solving energy issues is a worldwide problemFind means/tools to foster worldwide cross-sharing information on pre-competitive topics between each national scientific programCountries/continentscreate their own programs,set-up new federative infrastructures Energy Frontiers Research Centers (US) European Network of Excellence (ALISTORE-ERI) French Hub (RS2E) in 2010 reuniting(researchers, engineers, users)US:US:9,17bEU:EU: 1,2bASIA:ASIA:>3,3bThank you for your attentionALISTORE_ERILiLiLRCSRS2E

Recommended

View more >