Monografia Trigonometria Com Material Do Circulo Trig

  • View
    289

  • Download
    4

Embed Size (px)

Transcript

  • UNIVERSIDADE FEDERAL DE MINAS GERAIS

    Instituto de Cincia Exatas - ICEX

    Departamento de Matemtica

    MATERIAL CONCRETO PARA O ENSINO DE TRIGONOMETRIA

    Erika da Costa Ribeiro

    Belo Horizonte

    2011

  • 1

    Erika da Costa Ribeiro

    MATERIAL CONCRETO PARA O ENSINO DE TRIGONOMETRIA

    Monografia de concluso de curso

    apresentada Especializao

    Matemtica para Professores do

    Ensino Bsico, da Universidade

    Federal de Minas Gerais

    Orientador: Prof. Dr. Paulo

    Antnio Fonseca Machado

    Belo Horizonte

    2011

  • 2

    Agradecimentos

    Agradeo a Luz Divina por sempre iluminar meus caminhos, fazendo com que perceba as

    oportunidades que a vida me oferece.

    Aos meus colegas do curso de Especializao e principalmente Soraya Armond, Gleiciane

    Souza, Hamilton Soares e Joo Ribas, pois, a partir de ideias discutidas durante o curso surgiu

    esse trabalho.

    Ao meu marido, Luis Carlos da Costa, por sempre me apoiar e incentivar nas minhas

    decises.

    Ao professor Paulo Antnio pelo carinho e dedicao que me recebeu como orientanda.

  • 3

    RESUMO

    Nesse trabalho pretende-se discutir a importncia do uso de material concreto para o

    ensino da trigonometria, no Ensino Mdio, e mostrar alguns materiais que podem ser

    utilizados.

    Ainda, apresentaremos atividades para serem utilizadas com o material e propostas de

    oficinas. Essas atividades e oficinas tm como foco a formao e visualizao de conceitos e

    relaes trigonomtricas.

    Palavras-chave: trigonometria, material concreto, ciclo trigonomtrico

  • 4

    ABSTRACT

    This paper was conceived to discuss the importance of dealing with concrete material

    in trigonometry in high school classes.

    Although the work with this kind of material has been considered important in primary

    school many times it is forgotten in high school teaching.

    In this project the goal is to show how to use concrete material in trigonometry classes

    and give some ideas of activities and workshops to make the mathematic classes more

    pleasant and meaningful to teenagers.

    The main reason for this approach is the great difficulty found in teaching/learning

    trigonometry using only mental relations and formulas.

  • 5

    SUMRIO

    1. INTRODUO ...............................................................................................

    1.1 O uso de materiais manipulativos .............................................................

    2. MATERIAIS MANIPULATIVOS SUGERIDOS ..........................................

    2.1 O Crculo Trigonomtrico ...................................................................

    2.2 Atividades sobre funes trigonomtricas ..........................................

    2.3 OFICINAS ...........................................................................................

    2.3.1 OFICINA 1: Definio de radiano e relao com o grau ..............

    2.3.2 OFICINA 2: Construo do Crculo Trigonomtrico ...................

    3. CONSIDERAES FINAIS ..........................................................................

    4. REFERNCIAS BIBLIOGRAFICAS ............................................................

    6

    7

    8

    9

    11

    19

    19

    21

    27

    28

  • 6

    1. INTRODUO

    Esse trabalho surgiu a partir dos questionamentos sobre o uso de material concreto

    durante a disciplina Produo de Material Didtico. Durante a disciplina tivemos que

    apresentar, em grupo, um material concreto. O Material apresentado pelo nosso grupo foi o

    Crculo Trigonomtrico exposto nesse trabalho. Motivada pelas discusses surgidas com a

    elaborao desse trabalho, com as leituras realizadas e com as trocas de experincias com os

    colegas dessa disciplina elaboramos essa monografia.

    Alm disso, o uso de material concreto, nas aulas de matemtica, torna-se uma

    preocupao cada vez mais comum. Os professores tm buscado materiais que tornem a

    aprendizagem mais prazerosa e significativa e que ajudem os alunos na manipulao mental

    dos conceitos matemticos. Observamos, porm, maior preocupao dos professores do

    ensino fundamental do que do ensino mdio.

    Partimos da ideia de Moyer, de que materiais manipulativos devem representar

    concretamente ideias matemticas abstratas. Manipular ativamente tais materiais, permite aos

    alunos desenvolver um repertrio de imagens que podem ser usadas na manipulao mental

    de conceitos abstratos. Essas ideias sobre manipulao vm de encontro com as propostas de

    Pestalozzi (1746 - 1827) e da escola ativa. Ele acreditava que uma educao verdadeira

    deveria partir da atividade dos jovens (canto, desenho, modelagem, jogos, excurses,

    manipulaes de objetos).

    A trigonometria, ferramenta importante nos dias de hoje, o tema do nosso material

    concreto. Ele se justifica pelas inmeras dificuldades encontradas por alunos e professores em

    seu processo de ensino aprendizagem. Constatamos, atravs do cotidiano de sala de aula, as

    dificuldades dos alunos e muitas vezes de professores em manipular e relacionar as

    informaes contidas no crculo trigonomtrico. Os alunos tm dificuldades em partir de

    conceitos bsicos e de forma autnoma chegar as novas relaes e elaboraes mentais. Ao

    estudar trigonometria distanciam-se dos princpios bsicos (definies e do crculo

    trigonomtrico) e listam interminveis frmulas e relaes.

    O material concreto, o crculo trigonomtrico, uma adaptao do material

    apresentado por Marcos Sebastio Lopes em sua monografia intitulada Material Pedaggico

    para o Ensino da Trigonometria no Tringulo Retngulo e no Crculo Trigonomtrico.

    Partindo desse material listamos e elaboramos atividades que podem ser exploradas no ensino

    da trigonometria. Procuramos atividades prximas das propostas nos livros de ensino mdio.

  • 7

    Porm, devemos estar atentos que o uso pelo uso do material certamente no levar

    aprendizagem significativa. O professor deve ter objetivos claros e ser um mediador e

    incentivador de discusses e aes que promovam descobertas e compreenso de conceitos a

    respeito do contedo.

    1.1. O USO DE MATERIAIS MANIPULATIVOS

    O uso de materiais manipulativos defendido h algum tempo por pesquisadores e

    tericos no campo da Educao. Vrios estudos mostram que as crianas precisam entender o

    que esto aprendendo e o material manipulativo um instrumento importante para esse fim,

    pois, contribui para a elaborao de conceitos matemticos abstratos que s no mundo da

    imaginao uma tarefa difcil, auxiliando na maturidade mental do educando.

    Nos estudos de Bruner (1960,1986) podemos verificar trs estgios de

    desenvolvimento cognitivo: enactive, icnico e simblico.

    No enactive ou ativo, a criana representa o mundo atravs da relao entre a experincia e a

    ao, da manipulao e do tocar. No icnico a representao visual da realidade j

    desenvolvida; a criana consegue representar mentalmente os objetos. No simblico, a

    linguagem aparece como forma de representar e organizar a realidade. Nesse estgio a criana

    consegue operar hipteses formuladas sobre a realidade. O ensino deve privilegiar esses

    estgios em que o educando, ao manipular objetos, cria uma imagem mental sobre o mesmo,

    conseguindo levantar hiptese e fazer dedues.

    Segundo Ponte e Serrazina (2000) os conceitos e relaes matemticas abstratos

    podem ser ilustrados e representados por diversos instrumentos, contribuindo na elaborao

    de ideias matemticas e na construo e representao de conceitos.

    Dienes1, que inspirou seus estudos nas teorias construtivistas de Piaget, tinha como

    foco a construo cognitiva da criana. Ele afirma que a aquisio de noes matemticas

    ocorre em etapas. Primeiro, o professor deve criar um meio artificial que promova a

    aprendizagem de um conceito matemtico; segundo, introduzir jogos (com regras claras) onde

    a criana se familiarize com o conceito estudado; terceiro, apresentar novos jogos,

    semelhantes ao primeiro, em que se pode comear a abstrair; quarto, a criana cria

    1 Estudou latim, alemo, Matemtica Pura e Aplicada (1934-1937) obteve o grau BA em 1937 com honras pela Universidade de Londres, Ph.D. formado pela Universidade de Londres, em 1939, tese sobre "Fundamentos da

    Matemtica Construtivista Segundo Borel e Brouwer.

  • 8

    representaes sobre o que foi manipulado e em seguida consegue utilizar a linguagem para

    descrever as hipteses e concluses sobre o conceito estudado, conseguindo a noo lgica

    Matemtica. Segundo Dienes, para a criana abstrair necessrio que ela vivencie vrias

    situaes concretas, s assim, ela conseguir formar conceitos, formular hipteses e verificar

    sua veracidade.

    Como se pode perceber, o material concreto um instrumento importante para

    motivar; inovar; auxiliar na construo do conhecimento; desenvolver o pensamento

    matemtico; criar, confrontar e verificar hipteses, desenvolver a criatividade, entre outras.

    Manipular os materiais concretos permite aos alunos criar imagens mentais de conceitos

    abstratos. Porm, ele sozinho no consegue atingir essas funes. preciso uma participao

    ativa do professor, pois, materiais concretos sozinhos no garantem a compreenso de

    conceitos. Ao utilizar um material necessrio que o professor o conhea bem, saiba aplic-lo

    e