PERCOBAAN SATU FAKTOR - ?· Langkah-langkah pengujian hipotesis: 1) ... MODEL DATA Data pada tabel ...…

  • Published on
    03-Mar-2019

  • View
    212

  • Download
    0

Embed Size (px)

Transcript

Arum Handini Primandari, M.Sc.PERCOBAAN SATU FAKTOR:

RANCANGAN ACAK LENGKAP (RAL)

PENGUJIAN HIPOTESIS

Langkah-langkah pengujian hipotesis:1) Merumuskan hipotesis

2) Memilih taraf nyata

3) Daerah kritis

4) Menentukan statistik uji

5) Keputusan dan kesimpulan

HIPOTESIS

Keadaan sesungguhnya dalam populasi

H0 benar H0 salah

Terima H0 Tepat Kesalahan Jenis II ()

Tolak H0 Kesalahan jenis I () Tepat

ANALISIS VARIANSI

Misalkan: terdapat percobaan pengaruh pemberian jenis pupuk pada pertumbuhan batangsuatu tanaman. Pupuk yang diujikan terdapat 3 macam. Akan diuji adakah perbedaanpengaruh ketiga jenis pupuk pada pertumbuhan tanaman.

UlanganPerlakuan

1 2 3

1 19.4 17.7 17

2 32.6 24.8 19.4

3 27 27.9 9.1

4 32.1 25.2 11.9

5 33 24.3 15.8

1. Faktor?

2. Level?

3. Perlakuan?

1. Faktor: pupuk

2. Level: 3 macam pupuk

3. Perlakuan: pemberian pupuk yang

berbeda

MODEL DATAData pada tabel tersebut dimodelkan sebagai berikut:

= + dengan = 1, 2, 3, , dan = 1, 2, 3, , (eq. 1)

merupakan nilai observasi ke-, adalah rata-rata pada perlakuan ke-, dan adalah galatke-. Model tersebut disebut model rata-rata.

Model alternatifnya:

Substitusi nilai = + pada persamaan (1), sehingga:

= + + (eq. 2)

Dimana merupakan rata-rata umum (semua), merupakan pengaruh perlakuaan ke-. Model tersebut disebut model pengaruh.

Secara intuisi, pada persamaan 2 diperoleh:

merupakan konstanta, dan

Pengaruh perlakuan yaitu dianggap sebagai deviasi dari konstanta akibat darisuatu perlakuan ke-. Sehingga disebutlah analisis variansi.

Persamaan 1 (maupun 2) disebut model pada analisis variansi satu arah karenahanya terdapat 1 faktor yang dianalisis.

Bagaimana menuliskan hipotesisnya?

RANCANGAN ACAK LENGKAP (RAL)

RAL merupakan rancangan paling sederhana di antara rancangan-rancanganpercobaan baku.

Jika kita ingin mempelajari t perlakuan dengan r satuan percobaan untuk setiapperlakuan (menggunakan rt satuan percobaan), maka RAL mengalokasikan t perlakuan secara acak pada rt satuan percobaan. Pola ini disebut denganpengacakan lengkap.

Penggunaan RAL akan tepat dalam kasus: Bahan percobaan homogen atau relatif homogen.

Jumlah perlakuan terbatas

KEUNTUNGAN RAL

Keuntungan RAL: Denah perancangan percobaan lebih mudah

Analisis statistika terhadap subyek, sangat sederhana

Fleksibel dalam ulangan

Kehilangan informasi relatif sedikit, dalam hal data hilang dibanding rancangan lain

KEKURANGAN RAL

Rancangan hanya dapat digunakan dengan beberapa perlakuan (yang tidakbanyak) serta untuk unit percobaan yang relatif homogen.

Apabila harus melibatkan cukup banyak unit percobaan, maka variabilitasseluruh unit percobaan akan cukup besar. Sehingga tidak disarankanmenggunakan RAL karena tidak efisien

PENGACAKAN DAN DENAH RANCANGAN

Misalkan: Kita memiliki 3 perlakuan yaitu: A, B, C

Setiap perlakuan diulang 5 kali, sehingga kita memiliki 15 unit percobaan.

Pengacakan dilakukan secara langsung pada 15 unit percobaan.

Contoh denah pengacakan:1; A 2; C 3; C

4; B 5; B 6; C

7; A 8; A 9; A

10; B 11; B 12; C

13; B 14; C 15; A

Nomor Perlakuan

TABULASI DATA

Tabulasi data dapat disajikan sebagai berikut:

Baris merupakanperlakuan

Kolom merupakanulangan

PerlakuanUlangan

TotalRata-rata1 2 n

1 11 12 1 1 1

2 21 22 2 2 2

1 2

MODEL LINIER DAN ANALISIS VARIANSI UNTUK RAL

Bentuk umum dari model linier aditif untuk RAL:

Dimana:

Yij: pengamatan pada perlakuan ke-i dan ulangan ke-j

: rataan umum

i: rataan perlakuan ke-i

j: pengaruh perlakuan ke-i

ij: pengaruh acak pada perlakuan ke-i, ulangan ke-j

Persamaan tersebut disebut juga analisis satu-arah (one-way) atau faktor analisis variansi tunggal (single-factor analisysof variance) karena hanya satu faktor yang diinvestigasi.

ij i ij

i ij

Y

i

i 1,2,...,t

j 1,2,...,r

i i

Berdasarkan model untuk RAL, pendugaan terhadap pengaruh perlakuan denganmetode kuadrat terkecil (least square method) ditentukan dengan asumsi bahwa

diperoleh:

t

i i

i

0 atau E 0

i i

ij ij ij i

Y

Y

e Y Y

MODEL DALAM ANALISIS VARIANSI

1. Model Tetap (Fixed Model)

Dalam model ini, i bersifat tetap dan galat percobaan

Keadaan ini menggambarkan bahwa peneliti hanya dapat mengambil kesimpulanyang berhubungan dengan perlakuan yang dicobakannya.

Asumsi model tetap dapat dituliskan:

iid

2

ij N 0,

iid

2 2

i ij ij ij0;Var , ; N 0,

Hipotesis untuk model tetap:

atau dapat dituliskan:

Hipotesis dirumuskan untuk menguji bahwa tidak ada pengaruh perlakuanterhadap respon.

0 1 2 t

1 i j

H : ... (rataan semua perlakuan sama)

H : untuk paling tidak sepasang (i,j)

0 1 2 t

1 i

H : ... 0

H : 0(i 1,2,...,t)

2. Model Acak (Random Model)

Dalam model acak, peneliti akan berhadapan dengan populasi perlakuan.

Kesimpulan yang ditarik mengenai populasi perlakuan didasarkan atassejumlah (t buah) perlakuan yang dipilih secara acak

Asumsi model acak:

iid

2 2 2

i i ij ij ijE 0;Var ;Var , ; N 0,

Hipotesis untuk model acak

(rata-rata yang sesungguhnya dari ke-t buah grup perlakuan sama)

(paling sedikit ada rata-rata satu grup perlakuan yang berbeda dengan yang lain)

Atau

(tidak ada keragaman dalam dalam populasi perlakuan)

(ada keragaman dalam populasi perlakuan)

2

0H : 0

0 1 2 tH : ... 0

1 iH : 0

2

1H : 0

KESIMPULAN PERBEDAAN MODEL FIX DANRANDOM

Model Fix Model Random

Perlakuan Ditetapkan peneliti Diacak dari populasi perlakuan

Hipotesis

Kesimpulan bersifat Terbatas hanya melingkupi

perlakuan yang dicobakan

Bersifat umum

DEKOMPOSISI JUMLAH KUADRAT TOTAL

Keragaman total diuraikan sebagai berikut:

Jika dikuadratkan kedua ruas:

ij ij

i i

i

i

i

j

Y YY Y Y Y

Y Y Y Y

22

ij ij i i

2 2

ij i i ij i i

Y Y Y Y Y Y

Y Y Y Y 2 Y Y Y Y

Kemudian jika dijumlahkan untuk semua pengamatan:

karena

Sehingga:

t r t r t r2 2 2

ij ij i i

i 1 j 1 i 1 j 1 i 1 j 1

t r

ij i i

i 1 j 1

Y Y Y Y Y Y

2 Y Y Y Y

t r

ij i i

i 1 j 1

Y Y Y Y 0

t r t r t r2 2 2

ij i ij i

i 1 j 1 i 1 j 1 i 1 j 1

Y Y Y Y Y Y

Atau:

Jumlah kuadrat total = Jumlah kuadrat perlakuan + Jumlah kuadrat galat

t r t r t r2 2 2

ij i ij i

i 1 j 1 i 1 j 1 i 1 j 1

JKT JKP JKG

Y Y Y Y Y Y

PERHITUNGAN JUMLAHKUADRAT UNTUKULANGAN SAMA

FK = Faktor koreksi

JKT = Jumlah kuadrat total

JKP = Jumlah kuadrat perlakuan

JKG = Jumlah kuadrat galat

2YFK

tr

t r t r2

2

ij ij

i 1 j 1 i 1 j 1

JKT Y Y Y FK

t r t2

2

i i

i 1 j 1 i 1

1JKP Y Y Y FK

r

t r 2

ij i

i 1 j 1

JKG Y Y JKT JKP

PERHITUNGAN JUMLAH KUADRAT UNTUK ULANGAN YANG TIDAK SAMA

FK = Faktor koreksi

JKP = Jumlah kuadrat perlakuan

untuk JKT dan JKG rumusnya sama dengan yang menggunakan ulangan sama.

2

t

i

i 1

YFK

r

2t r t2i

i

i 1 j 1 i 1 i

YJKP Y Y FK

r

TABEL ANALISIS VARIANSI

Sumber

Keragaman

Derajat

bebas

Jumlah

kuadrat

(JK)

Kuadrat tengah (KT) F-hitung

Ulangan sama

Perlakuan t 1 JKP KTP = JKP/ (t 1) F = KTP/KTG

Galat t(r 1) JKG KTG = JKG/ [t(r 1) ]

Total tr 1 JKT

Ulangan tidak sama

Perlakuan t 1 JKP KTP = JKP/ (t 1) F = KTP/KTG

Galat JKG KTG = JKG/

Total JKT

ir 1

ir 1

ir 1

PENGUJIAN HIPOTESIS

Statistik Uji:

mengikuti sebaran F dengan derajat bebas pembilang sebesar (t 1) dan derajatbebas penyebut [t(r 1)].

Hipotesis ditolak jika:

penolakan hipotesis nol berimplikasi bahwa perlakuan yang diberikan terhadapunit-unit percobaan memberikan pengaruh yang nyata terhadap respon yang diamati

hitungF KTP KTG

1 2hitung ;db ;dbF F

KOEFISIEN KERAGAMAN (KK)Koefisien keragaman (KK) atau disebut juga keragaman relatif terhadap besaran data adalah:

Nilai KK yang terlalu besar bila dibandingkan dengan nilai biasa diperoleh peneliti, mencerminkan bahwa unit-unit percobaan yang digunakan tidak homogen.

KK merupakan indeks keterandalan yang baik bagi suatu percobaan. Semakin tinggi nilaiKK makin rendah keandalan percobaan tsb.

Besarnya KK ideal tergantung pada bidang yang studi yang digeluti. Misal: untuk bidangpertanian dianggap wajar adalah 20% - 25%.

KTGKK 100% 100%

Y Y

PENERAPAN RAL MODEL TETAP DENGAN ULANGAN SAMA

Terdapat suatu penelitian mengenai kandungan nitrogen dalam miligram