Regresi Linear

  • Published on
    12-Jul-2015

  • View
    20.132

  • Download
    23

Embed Size (px)

Transcript

Regresi Linear Regresi linear adalah alat statistik yang dipergunakan untuk mengetahui pengaruh antara satu atau beberapa variabel terhadap satu buah variabel. Variabel yang mempengaruhi sering disebut variabel bebas, variabel independen atau variabel penjelas. Variabel yang dipengaruhi sering disebut dengan variabel terikat atau variabel dependen. Secara umum regresi linear terdiri dari dua, yaitu regresi linear sederhana yaitu dengan satu buah variabel bebas dan satu bu ah variabel terikat; dan regresi linear berganda dengan beberapa variabel bebas dan satu buah variabel terikat. Analisis regresi linear merupakan metode statistik yang paling jamak dipergunakan dalam penelitianpenelitian sosial, terutama penelitian ekonomi. Program komputer yang paling banyak digunakan adalah SPSS (Statistical Package For Service Solutions). Regresi Linear Sederhana Analisis regresi linear sederhana dipergunakan untuk mengetahui pengaruh antara satu buah variabel bebas terhadap satu buah variabel terikat. Persamaan umumnya adalah: Y = a + b X. Dengan Y adalah variabel terikat dan X adalah variabel bebas. Koefisien a adalah konstanta (intercept) yang merupakan titik potong antara garis regresi dengan sumbu Y pada koordinat kartesius. Langkah penghitungan analisis regresi dengan menggunakan program SPSS adalah: Analyse > regression> linear. Pada jendela yang ada, klik variabel terikat lalu klik tanda panah pada kota dependent. Maka variabel tersebut akan masuk ke kotak sebagai variabel dependen. Lakukan dengan cara yang sama untuk variabel bebas (independent). Lalu klik OK dan akan muncul output SPSS. Interpretasi Output 1. Koefisien determinasi

Koefisien determinasi mencerminkan seberapa besar kemampuan variabel bebas dalam menjelaskan varians variabel terikatnya. Mempunyai nilai antara 0 1 di mana nilai yang mendekati 1 berarti semakin tinggi kemampuan variabel bebas dalam menjelaskan varians variabel terikatnya. 2. Nilai t hitung dan signifikansi

Nilai t hitung > t tabel berarti ada pengaruh yang signifikan antara variabel bebas terhadap variabel terikat, atau bisa juga dengan signifikansi di bawah 0,05 untuk penelitian sosial, dan untuk penelitian bursa kadang-kadang digunakan toleransi sampai dengan 0,10. 3. Persamaan regresi

Sebagai ilustrasi variabel bebas: Biaya promosi dan variabel terikat: Profitabilitas (dalam juta rupiah) dan hasil analisisnya Y = 1,2 + 0,55 X. Berarti interpretasinya: 1. 2. Jika besarnya biaya promosi meningkat sebesar 1 juta rupiah, maka profitabilitas meningkat sebesar 0,55 juta rupiah. Jika biaya promosi bernilai nol, maka profitabilitas akan bernilai 1,2 juta rupiah.

Interpretasi terhadap nilai intercept (dalam contoh ini 1,2 juta) harus hati-hati dan sesuai dengan rancangan penelitian. Jika penelitian menggunakan angket dengan skala likert antara 1 sampai 5, maka interpretasi di atas tidak boleh dilakukan karena variabel X tidak mungkin bernilai nol. Interpretasi dengan skala likert tersebut sebaiknya menggunakan nilai standardized coefficient sehingga tidak ada konstanta karena nilainya telah distandarkan. Contoh: Pengaruh antara kepuasan (X) terhadap kinerja (Y) dengan skala likert antara 1 sampai dengan 5. Hasil output yang digunakan adalah standardized coefficients sehingga Y = 0,21 X dan diinterpretasikan bahwa peningkatan kepuasan kerja akan diikuti dengan peningkatan kinerja atau penurunan kepuasan kerja juga akan diikuti dengan penurunan kinerja. Peningkatan kepuasan kerja dalam satu satuan unit akan diikuti dengan peningkatan kinerja sebesar 0,21 (21%). Regresi Linear Berganda Analisis regresi linear berganda sebenarnya sama dengan analisis regresi linear sederhana, hanya variabel bebasnya lebih dari satu buah. Persamaan umumnya adalah: Y = a + b1 X1 + b2 X2 + . + bn Xn. Dengan Y adalah variabel bebas, dan X adalah variabel-variabel bebas, a adalah konstanta (intersept) dan b adalah koefisien regresi pada masing-masing variabel bebas. Interpretasi terhadap persamaan juga relatif sama, sebagai ilustrasi, pengaruh antara motivasi (X1), kompensasi (X2) dan kepemimpinan (X3) terhadap kepuasan kerja (Y) menghasilkan persamaan sebagai berikut: Y = 0,235 + 0,21 X1 + 0,32 X2 + 0,12 X3 1. Jika variabel motivasi meningkat dengan asumsi variabel kompensasi dan kepemimpinan tetap, maka kepuasan kerja juga akan meningkat

2. 3.

Jika variabel kompensasi meningkat, dengan asumsi variabel motivasi dan kepemimpinan tetap, maka kepuasan kerja juga akan meningkat. Jika variabel kepemimpinan meningkat, dengan asumsi variabel motivasi dan kompensasi tetap, maka kepuasan kerja juga akan meningkat.

Interpretasi terhadap konstanta (0,235) juga harus dilakukan secara hati-hati. Jika pengukuran variabel dengan menggunakan skala Likert antara 1 sampai dengan 5 maka tidak boleh diinterpretasikan bahwa jika variabel motivasi, kompensasi dan kepemimpinan bernilai nol, sebagai ketiga variabel tersebut tidak mungkin bernilai nol karena Skala Likert terendah yang digunakan adalah 1. Analisis regresi linear berganda memerlukan pengujian secara serempak dengan menggunakan F hitung. Signifikansi ditentukan dengan membandingkan F hitung dengan F tabel atau melihat signifikansi pada output SPSS. Dalam beberapa kasus dapat terjadi bahwa secara simultan (serempak) beberapa variabel mempunyai pengaruh yang signifikan, tetapi secara parsial tidak. Sebagai ilustrasi: seorang penjahat takut terhadap polisi yang membawa pistol (diasumsikan polisis dan pistol secara serempak membuat takut penjahat). Akan tetapi secara parsial, pistol tidak membuat takut seorang penjahat. Contoh lain: air panas, kopi dan gula menimbulkan kenikmatan, tetapi secara parsial, kopi saja belum tentu menimbulkan kenikmatan. Penggunaan metode analisis regresi linear berganda memerlukan asumsi klasik yang secara statistik harus dipenuhi. Asumsi klasik tersebut meliputi asumsi normalitas, multikolinearitas, autokorelasi, heteroskedastisitas dan asumsi linearitas (akan dibahas belakangan). Langkah-langkah yang lazim dipergunakan dalam analisis regresi linear berganda adalah 1) koefisien determinasi; 2) Uji F dan 3 ) uji t. Persamaan regresi sebaiknya dilakukan di akhir analisis karena interpretasi terhadap persamaan regresi akan lebih akurat jika telah diketahui signifikansinya. Koefisien determinasi sebaiknya menggunakan adjusted R Square dan jika bernilai negatif maka uji F dan uji t tidak dapat dilakukan. Pertanyaan-pertanyaan yang sering muncul 1. Dalam uji regresi sederhana apakah perlu menginterpretasikan nilai F hitung?Uji F adalah uji kelayakan model (goodness of fit) yang harus dilakukan dalam analisis

regresi linear. Untuk analisis regresi linear sederhana Uji F boleh dipergunakan atau tidak, karena uji F akan sama hasilnya dengan uji t. 2. Kapan menggunakan uji dua arah dan kapan menggunakan uji dua arah?Penentuan arah adalah berdasarkan masalah penelitian, tujua n penelitian dan perumusan

hipotesis. Jika hipotesis sudah menentukan arahnya, maka sebaiknya digunakan uji satu arah, tetapi jika hipotesis belum menentukan arah, maka sebaiknya menggunakan uji dua arah. Penentuan arah pada hipotesis berdasarkan tinjauan literatur. Contoh hipotesis dua arah: Terdapat pengaruh antara kepuasan terhadap kinerja. Contoh hipotesis satu arah: Terdapat pengaruh positif antara kepuasan terhadap kinerja. Nilai t tabel juga berbeda antara satu arah dan dua arah. Jika menggunakan signifikansi, maka signifikansi hasil output dibagi dua terlebih dahulu, baru dibandingkan dengan 5%. 3. Apa bedanya korelasi dengan regresi?

Korelasi adalah hubungan dan regresi adalah pengaruh. Korelasi bisa berlaku bolak-balik, sebagai contoh A berhubungan dengan B demikian juga B berhubungan dengan A. Untuk regresi tidak bisa dibalik, artinya A berpengaruh terhadap B, tetapi tidak boleh dikatakan B berpengaruh terhadap A. Dalam kehidupan sehari-hari kedua istilah itu (hubungan dan pengaruh) sering dipergunakan secara rancu, tetapi dalam ilmu statistiksangat berbeda. A berhubungan dengan B belum tentu A berpengaruh terhadap B. Tetapi jika A berpengaruh terhadap B maka pasti A juga berhubungan dengan B. (Dalam analisis lanjut sebenarnya juga ada penga ruh yang bolak-balik yang disebut dengan recursive, yang tidak dapat dianalisis dengan analisis regresi tetapi menggunakan structural equation modelling). Uji Asumsi Klasik Uji asumsi klasik adalah persyaratan statistik yang harus dipenuhi pada analisis regresi linear berganda yang berbasis ordinary least square (OLS). Jadi analisis regresi yang tidak berdasarkan OLS tidak memerlukan persyaratan asumsi klasik, misalnya regresi logistik atau regresi ordinal. Demikian juga tidak semua uji asumsi klasik harus dilakukan pada analisis regresi linear, misalnya uji multikolinearitas tidak dapat dipergunakan pada analisis regresi linear sederhana dan uji autokorelasi tidak perlu diterapkan pada data cross sectional. Uji asumsi klasik juga tidak perlu dilakukan untuk analisis regresi linear yang bertujuan untuk menghitung nilai pada variabel tertentu. Misalnya nilai return saham yang dihitung dengan market model, atau market adjusted model. Perhitungan nilai return yang diharapkan dilakukan dengan persamaan regresi, tetapi tidak perlu diuji asumsi klasik. Setidaknya ada lima uji asumsi klasik, yaitu uji multikolinearitas, uji heteroskedastisitas, uji normalitas, uji autokorelasi dan uji linearitas. Tidak ada ketentuan yang pasti tentang urutan uji mana dulu yang harus dipenuhi. Analisis dapat dilakukan tergantung pada data yang ada. Sebagai contoh, dilakukan analisis terhadap semua uji asumsi klasik, lalu dilihat mana yang tidak memenuhi persyaratan. Kemudian dilakukan perbaikan pada uji tersebut, dan setelah memenuhi persyarata n, dilakukan pengujian pada uji yang lain. 1. Uji Normalitas Uji normalitas adalah untuk melihat apakah nilai residual terdistribusi normal atau tidak. Model regresi yang baik adalah memiliki nilai residual yang terdistribusi normal.

Recommended

View more >