S I L A B U S viewPenugasan 4 Buku referensi yang relevan 2.Menghitung luas permukaan bangun ruang Luas permukaan bangun ruang dihitung dengan cermat Permukaan bangun ruang dihitung luasnya Mengidentifikasi bentuk permukaan bangun ...

  • Published on
    07-May-2018

  • View
    213

  • Download
    1

Transcript

S I L A B U S

S I L A B U S

NAMA SEKOLAH

: SMKN 1 PULAU MAYA KARIMATA

MATA PELAJARAN

: MATEMATIKA

KELAS / SEMESTER

: I / 1

STANDAR KOMPETENSI : Memecahkan masalah berkaitan dengan konsep operasi bilangan riil

KODE

: D 20

ALOKASI WAKTU

: 30 x 45 menit

KOMPETENSI DASAR

INDIKATOR

MATERI PEMBELAJARAN

KEGIATAN PEMBELAJARAN

PENILAIAN

ALOKASI WAKTU

SUMBER BELAJAR

TM

PS

PI

1.Menerapkan

operasi pada

bilangan riil

Dua atau lebih bilangan bulat dioperasikan ( dijumlah , dikurang, dikali ,dibagi ) sesuai dengan prosedur

Dua atau lebih bilangan pecahan dioperasikan ( dijumlah, dikurang, dikali, dibagi ) sesuai dengan prosedur

Bilangan pecahan dikonversikan ke bentuk persen atau pecahan desimal sesuai prosedur

Konsep perbandingan (senilai dan berbalik nilai) skala dan persen digunakan dalam penyelesaian masalah program keahlian

Sistem bilangan riil

Operasi pada bilangan bulat

Operasi pada bilangan pecahan

Konversi bilangan

Perbandingan (senilai dan berbalik nilai) skala dan persen

Penerapan bilangan riil dalam menyelesaikan masalah program keahlian

Membedakan macam macam bilangan riil

Menghitung operasi dua atau lebih bilangan bulat sesuai dengan prosedur

Menghitung operasi dua atau lebih bilangan pecahan sesuai dengan prosedur

Melakukan konversi pecahan ke bentuk persen, pecahan desimal atau persen dan sebaliknya

Menjelaskan perbandingan (senilai dan berbalik nilai) skala dan persen

Menyelesaikan masalah program keahlian yang berkaitan dengan operasi bilangan riil

Tes tertulis

Pengamatan

penugasan

4

Buku referensi yang relevan

KOMPETENSI DASAR

INDIKATOR

MATERI PEMBELAJARAN

KEGIATAN PEMBELAJARAN

PENILAIAN

ALOKASI WAKTU

SUMBER BELAJAR

TM

PS

PI

2.Menerapkan

operasi pada

bilangan berpangkat

Bilangan berpangkat dioperasikan sesuai dengan sifat-sifatnya

Bilangan berpangkat disederhanakan atau ditentukan nilainya dengan menggunakan sifat-sifat bilangan berpangkat

Konsep bilangan berpangkat diterapkan dalam penyelesaian masalah.

Konsep bilangan berpangkat dan sifat-aifatnya

Operasi pada bilangan berpangkat

Penyederhanaan bilangan berpangkat

Menjelaskan konsep dan sifat-sifat bilangan berpangkat

Melakukan perhitungan operasi bilangan berpangkat dengan menggunakan sifat-sifatnya

Menyederhanakan bilangan berpangkat

Menyelesaikan masalah program keahlian yang berkaitan dengan bilangan berpangkat

Tes tertulis

Pengamatan

Penugasan

8

Buku referensi yang relevan

3.Menerapkan operasi pada bilangan irasional

Bilangan bentuk akar dioperasikan sesuai dengan sifat-sifatnya

Bilangan bentuk akar disederhanakan atau ditentukan nilainya dengan menggunakan sifat-sifat bentuk akar

Konsep bilangan irasioanal diterapkan dalam penyelesaian masalah.

Konsep bilangan irasional

Operasi pada bilangan bentuk akar

Penyederhanaan bilangan bentuk akar

Bentuk akar digunakan untuk:

Perhitungan

konversi ukuran

Mengklasifikasikan bilangan riil ke bentuk akar dan bukan bentuk akar

Menjelaskan konsep dan sifat-sifat bilangan irasional

Melakukan perhitungan operasi bilangan irasioanal

Menyederhanakan bilangan irasioanal

Menyelesaikan masalah yang berkaitan dengan bilangan irasioanal

Tes tertulis

Pengamatan

Penugasan

8

KOMPETENSI DASAR

INDIKATOR

MATERI PEMBELAJARAN

KEGIATAN PEMBELAJARAN

PENILAIAN

ALOKASI WAKTU

SUMBER BELAJAR

TM

PS

PI

4.Menerapkan konsep logaritma

Operasi logaritma diselesaikan sesuai dengan menggunakan tabel dan tanpa tabel

Soal-soal logaritma diselesaikan dengan menggunakan tabel dan tanpa tabel

Permasalahan program keahlian diselesaikan dengan menggunakan logaritma

Konsep logaritma

Operasi pada logaritma

Menjelaskan konsep logaritma

Menjelaskan sifat-sifat logaritma

Menggunakan tabel logaritma

Melakukan operasi logaritma dengan sifat-sifat logaritma

Menyelesaikan masalah program keahlian yang berkaitan dengan logaritma

Tes tertulis

Pengamatan

Penugasan

10

Buku referensi yang relevan

NAMA SEKOLAH

: SMKN 1 PULAU MAYA KARIMATA

MATA PELAJARAN

: MATEMATIKA

KELAS / SEMESTER

: I / 1

STANDAR KOMPETENSI

: Memecahkan masalah berkaitan dengan konsep aproksimasi kesalahan

KODE

: D 21

ALOKASI WAKTU

: 12 x 45 menit

KOMPETENSI DASAR

INDIKATOR

MATERI PEMBELAJARAN

KEGIATAN PEMBELAJARAN

PENILAIAN

ALOKASI WAKTU

SUMBER BELAJAR

TM

PS

PI

1.Menerapkan konsep kesalahan pengukuran

Hasil membilang dan mengukur dibedakan berdasar pengertiannya

Hasil pengukuran ditentukan salah mutlak dan salah relatifnya

Presentase kesalahan dihitung berdasar hasil pengukurannya

Toleransi dihitung berdasar hasil pengukurannya

Membilang dan mengukur

Salah mutlak dan salah relatif

Menentukan presentase kesalahan

Menentukan toleransi hasil pengukuran

Membedakan pengertian membilang dan mengukur

Melakukan kegiatan pengukuran terhadap sesuatu obyek

Menghitung kesalahan (salah mutlak dan salah relatif) suatu pengukuran

Menghitung prosentase kesalahan suatu pengukuran

Menghitung toleransi hasil suatu pengukuran

Menerapkan konsep kesalahan

Menerapkan konsep kesalahan pengukuran pada program keahlian

Tes tertulis

Pengamatan

Penugasan

4

Buku referensi lain yang relevan

2.Menerapkan konsep operasi hasil pengukuran

Jumlah dan selisih hasil pengukuran dihitung untuk menentukan hasil maksimum dan hasil minimumnya

Jumlah dan selisih hasil pengukuran

Melakukan kegiatan pengukuran terhadap sesuatu obyek

Menghitung jumlah dan selisih hasil pengukuran

Menghitung hasil maksimum dan minimum suatu pengukuran berdasarkan jumlah dan selisih hasil pengukuran

Tea tertulis

Pengamatan

Penugasan

8

Buku referensi yang relevan

KOMPETENSI DASAR

INDIKATOR

MATERI PEMBELAJARAN

KEGIATAN PEMBELAJARAN

PENILAIAN

ALOKASI WAKTU

SUMBER BELAJAR

TM

PS

PI

Hasil kali pengukuran dihitung untuk menentukan hasil maksimum dan hasil minimumnya

Hasil kali pengukuran

Menghitung hasil kali dari suatu pengukuran

Menghitung hasil maksimum dan minimum suatu pengukuran berdasarkan hasil kali daqri hasil pengukuran

Menerapkan hasil operasi pengukuran pada bidang program keahlian

NAMA SEKOLAH

: SMKN 1 PULAU MAYA KARIMATA

MATA PELAJARAN

: MATEMATIKA

KELAS / SEMESTER

: I / 1

STANDAR KOMPETENSI

: Memecahkan masalah berkaitan sistem persamaan dan pertidaksamaan linier dan kuadrat

KODE

: D 22

ALOKASI WAKTU

: 32 X 45 menit

KOMPETENSI DASAR

INDIKATOR

MATERI PEMBELAJARAN

KEGIATAN PEMBELAJARAN

PENILAIAN

ALOKASI WAKTU

SUMBER BELAJAR

TM

PS

PI

1. Menentukan himpunan penyelesaian persamaan dan pertidaksamaan linier

Persamaan linier ditentukan penyelesaiannya

Pertidaksamaan linier ditentukan penyelesaiannya

Persamaan dan pertidaksamaan linier serta penyelesaiannya

Menjelaskan pengertian persamaan linier

Menyelesaikan persamaan linier

Menjelaskan pengertian pertidaksamaan linier

Menyelesaikan pertidaksamaan linier

Menyelesaikan masalah program keahlian yang berkaitan dengan persamaan dan pertidaksamaan linier

Tea tertulis

Pengamatan

Penugasan

6

Buku referensi yang relevan

2. Menentukan himpunan penyelesaian persamaan dan pertidaksamaan linier

Persamaan kuadrat ditentukan penyelesaiannya

Pertidaksamaan kuadrat ditentukan penyelesaiannya

Persamaan dan peretidaksamaan kuadratserta penyelesaiannya

Akar akar persamaan kuadrat dan sifat sifatnya

Menjelaskan pengertian persamaan dan peretidaksamaan kuadrat

Menjelaskan akar akar persamaan kuadrat dan sifat sifatnya

Menyelesaikan persamaan dan pertidaksamaan kuadrat

Tea tertulis

Pengamatan

Penugasan

10

Buku referensi yang relevan

3. menerapkan persamaan dan pertidaksamaan kuadrat

Persamaan kuadrat disusun berdasarkan akar akar yang diketahui

Persamaan kuadrat baru disusun berdasarkan akar akar persamaan kuadrat lain

Persamaan dan pertidaksamaan kuadrat diterapkan dalam menyelesaikan masalah program keahlian

Menyusun persamaan kuadrat

Penerapan persamaan dan pertidaksamaan kuadrat dalam program keahlian

Menyusun persamaan kuadrat berdasarkan akar akar yang diketahui

Menyusun persamaan kuadrat berdasarkan akar akar persamaan kuadrat lain

Menyelesaikan masalah program keahlian yang berkaitan dengan persamaan dan pertidaksamaan kuadrat

Tes tertulis

Pengamatan

penugasan

10

Buku referensi yang relevan

KOMPETENSI DASAR

INDIKATOR

MATERI PEMBELAJARAN

KEGIATAN PEMBELAJARAN

PENILAIAN

ALOKASI WAKTU

SUMBER BELAJAR

TM

PS

PI

4. Menyelesaikan sistem persamaan

Sistem persamaan linier dua dan tiga variabel dapat ditentukan penyelesaiannya

Sistem persamaan dengan dua variabel satu linier dan satu kuadrat dapat ditentukan penyelesaiannya

Sistem persamaan linier dua dan tiga variabel

Sistem persamaan dengan dua variabel satu linier dan satu kuadrat

Memberi contoh sistem persamaan linier dua variabel dan tiga variabel

Menyelesaikan sistem persamaan linier dengan metoda eliminasi , substitusi atau keduanya

Memberi contoh sistem persamaan dengan dua variabel satu linier dan satu kuadrat

Menyelesaikan sistem persamaan dengan dua variabel satu linier dan satu kuadrat

Tes tertulis

Pengamatan

Penugasan

6

Buku referensi yang relevan

NAMA SEKOLAH

: SMKN 1 PULAU MAYA KARIMATA

MATA PELAJARAN

: MATEMATIKA

KELAS / SEMESTER

: I /

STANDAR KOMPETENSI

: Memecahkan masalah berkaitan dengan konsep matriks

KODE

: D 23

ALOKASI WAKTU

: 24 X 45 menit

KOMPETENSI DASAR

INDIKATOR

MATERI PEMBELAJARAN

KEGIATAN PEMBELAJARAN

PENILAIAN

ALOKASI WAKTU

SUMBER BELAJAR

TM

PS

PI

1.Mendiskripsikan macam macam matriks

Matriks ditentukan unsur unsur dan notasinya

Matriks dibedakan menurut jenis dan relasinya

Macam macam matriks

Menjelaskan pengertian matriks , notasi matriks , baris, kolom, elemen dan ordo matriks

Membedakan jenis jenis matriks

Menjelaskan kesamaan matriks

Menjelaskan trasnpose matriks

Tea tertulis

Pengamatan

Penugasan

8

Buku referensi yang relevan

2. Menyelesaikan operasi matriks

Dua matriks atau lebih ditentukan hasil penjumlahan atau pengurangannya

Dua matriks atau lebih ditentukan hasil kalinya

Operasi matriks

Menjelaskan operasi matriks antara lain penjumlahan dan pengurangan

Menjelaskan operasi matriks antara lain : perkalian skalar dengan matriks , perkalian matriks dengan matriks

Menyelesaikan penjumlahan , pengurangan dan / atau perkalian matriks

Menyelesaikan kesamaan matriks , menggunakan penjumlahan , pengurangan , dan perkalian matriks

Tea tertulis

Pengamatan

Penugasan

8

Buku referensi yang relevan

3. Menentukan determinan dan invers

Matriks ditentukan determinannya

Matriks ditentukan inversnya

Determinan dan invers matrika

Menjelaskan pengertian determinan matriks

Menentukan determinan dan invers matriks ordo 2

Menjelaskan pengertian minor , kofaktor , dan adjoin matriks

Menentukan determinan dan invers matriks ordo 3

Menyelesaikan sistem persamaan linier dengan menggunakan matris

Tes tertulis

Pengamatan

penugasan

8

Buku referensi yang relevan

NAMA SEKOLAH

: SMK

MATA PELAJARAN

: MATEMATIKA

KELAS / SEMESTER

: I /

STANDAR KOMPETENSI

: Menyelesaikan masalah program linier

KODE

: D 24

ALOKASI WAKTU

: 28 X 45 menit

KOMPETENSI DASAR

INDIKATOR

MATERI PEMBELAJARAN

KEGIATAN PEMBELAJARAN

PENILAIAN

ALOKASI WAKTU

SUMBER BELAJAR

TM

PS

PI

1. Membuat grafik himpunan penyelesaian sistem pertidaksamaan linier

Pertidaksamaan linier ditentukan daerah penyelesaiannya

Sistem pertidaksamaan linier dengan 2 variabel ditentukan daerah penyelesaiannya

Grafik himpunan penyelesaian sistem pertidaksamaan linier dengan 2 variabel

Menjelaskan pengertian program linier

Menggambar grafik himpunan penyelesaian pertidaksamaan linier

Menggambar grafik himpunan penyelesaian sistem pertidaksamaan linier dengan 2 variabel

Tes tertulis

Pengamatan

Penugasan

8

Buku referensi yang relevan

2.Menentukan model matematika dari soal ceritera (kal;imat verbal)

Soal ceritera (kalimat verbal) diterjemahkan ke kalimat matematika

Kalimat matematika ditentukan daerah penyelesaiannya

Model matematika

Menjelaskan pengertian model matematika

Menentukan apa yang diketahui dan ditanyakan

Menyusun sistem pertidaksamaan linier

Menentukan daerah penyelesaian

Tes tertulis

Pengamatan

Penugasan

6

Buku referensi yang relevan

3.Menentukan nilai optimum dari sistem pertidaksamaan linier

Fungsi obyektif ditentukan dari soal

Nilai optimum ditentukan berdasarkan fungsi obyektif

Fungsi obyektif

Nilai optimum

Menentukan fungsi obyektif

Menentukan titik optimum dari daerah himpunan penyelesaian sistem pertidaksamaan linier

Menetukan nilai optimum dari fungsi obyektif

Tes tertulis

Pengamatan

Penugasan

8

Buku referensi yang relevan

4.Menerapkan garis selidik

Garis selidik digambarkan dari fungsi obyektif

Nilai optimum ditentukan menggunakan garis selidik

Garis selidik

Menjelaskan pengertian garis selidik

Membuat garis selidik menggunakan fungsi obyektif

Menetukan nilai optimum menggunakan garis selidik

Tes tertulis

Pengamatan

Penugasan

6

Buku referensi yang relevan

NAMA SEKOLAH

: SMKN 1 PULAU MAYA KARIMATA

MATA PELAJARAN

: MATEMATIKA

KELAS / SEMESTER

: I / 2

STANDAR KOMPETENSI

: Menerapkan logika matematika dalam pemecahan masalah yang berkaitan dengan pernyataan majemuk dan pernyataan

berkuantor

KODE

: D 25

ALOKASI WAKTU

: 20 X 45 menit

KOMPETENSI DASAR

INDIKATOR

MATERI PEMBELAJARAN

KEGIATAN PEMBELAJARAN

PENILAIAN

ALOKASI WAKTU

SUMBER BELAJAR

TM

PS

PI

1.Mendeskripsikan pernyataan dan bukan pernyataan (kalimat terbuka)

Pernyataan dan bukan pernyataan dibedakan

Suatu pernyataan ditentukan nilai kebenarannya

Pernyataan dan bukan pernyataan

Membedakan kalimat berarti dan kalimat tidak berarti

Membedakan pernyataan dan kalimat terbuka

Menentukan nilai kebenaran suatu pernyataan

Tes tertulis

Pengamatan

Penugasan

4

Buku referensi yang relevan

2.Mendeskripsikan ingkaran, konjugasi, disjungsi, implikasi, biimplikasi dan ingkarannya

Ingkaran, konjugasi, disjungsi, implikasi, biimplikasi dibedakan

Ingkaran, konjugasi, disjungsi, implikasi, biimplikasi ditentukan nilai kebenarannya

Ingkaran dari konjugasi, disjungsi, implikasi, biimplikasi ditentukan nilai kebenarannya

Ingkaran, konjugasi, disjungsi, implikasi, biimplikasi dan ingkarannya

Memberi contoh dan membedakan ingkaran, konjugasi, disjungsi, implikasi, biimplikasi dan ingkarannya

Membuat tabel kebenaran dari ingkaran, konjugasi, disjungsi, implikasi, biimplikasi dan ingkarannya

Menentukan nilai kebenaran dari ingkaran, konjugasi, disjungsi, implikasi, biimplikasi dan ingkarannya

Tes tertulis

Pengamatan

Penugasan

10

Buku referensi yang relevan

3.Mendeskripsikan Invers, Konvers dan Kontraposisi

Invers, Konvers dan Kontraposisi ditentukan dari suatu implikasi

Invers, Konvers dan Kontraposisi ditentukan dari suatu implikasi dan ditentukan nilai kebenarannya

Invers, Konvers dan Kontraposisi dari implikasai

Menjelaskan pengertian Invers, Konvers dan Kontraposisi dari implikasi

Menentukan Invers, Konvers dan Kontraposisi dari implikasi

Menentukan nilai kebenaran Invers, Konvers dan Kontraposisi dari implikasi

Tes tertulis

Pengamatan

Penugasan

2

Buku referensi yang relevan

KOMPETENSI DASAR

INDIKATOR

MATERI PEMBELAJARAN

KEGIATAN PEMBELAJARAN

PENILAIAN

ALOKASI WAKTU

SUMBER BELAJAR

TM

PS

PI

4.Menerapkan modus panens, modus tollens, dan prinsip silogisme dalam menarik kesimpulan

Modus panens, modus tollens, dan silogisme dijelaskan perbedaannya

Modus panens, modus tollens, dan silogisme digunakan untuk menarik kesimpulan

Penarikan kesimpulan ditentukan kesahihannya

Modus panens, modus tollens, dan silogisme

Menjelaskan pengertian modus panens, modus tollens, dan silogisme

Menarik kesimpulan dengan modus panens, modus tollens, dan silogisme

Menetukan kesahihan penarikan kesimpulan

Tes tertulis

Pengamatan

Penugasan

4

Buku referensi yang relevan

NAMA SEKOLAH

: SMKN 1 PULAU MAYA KARIMATA

MATA PELAJARAN

: MATEMATIKA

KELAS / SEMESTER

: I / 2

STANDAR KOMPETENSI

: Menentukan kedudukan jarak, dan besar sudut yang melibatkan titik, garis dan bidang dalam ruang dimensi dua

KODE

: D 26

ALOKASI WAKTU

: 24 X 45 menit

KOMPETENSI DASAR

INDIKATOR

MATERI PEMBELAJARAN

KEGIATAN PEMBELAJARAN

PENILAIAN

ALOKASI WAKTU

SUMBER BELAJAR

TM

PS

PI

1.Mengidentifikasi sudut

Satuan sudut dalam derajat dikonversi kesatuan sudut dalam radian atau sebaliknya sesuai prosedur

Macam-macam satuan sudut

Konversi satuan sudut

Mengukur besar suatu sudut

Menentukan macam-macam satuan sudut

Mengkonversi satuan sudut

Tes tertulis

Pengamatan

Penugasan

4

Buku referensi yang relevan

2.Menentukan keliling bagun datar dan luas daerah bangun datar

Suatu bangun datar dihitung kelilingnya

Daerah suatu bangun datar dihituing luasnya

Bangun datar tak beraturan dihitung luasnya

Keliling bangun datar

Luas daerah bangun datar

Penerapan konsep keliling dan luas

Menghitung keliling dan luas bidang datar sesuai dengan rumusannya

Perhitungan keliling segi tiga, segi empat dan lingkaran

Perhitungan luas segi tiga, segi empat dan lingkaran

Perhitungan luas daerah bangun datar tidak beraturan dengan menggunakan metode koordinat, trapesium

Menyelesaikan masalah program keahlian yangt berkaitan dengan luas dan keliling bangun datar

Tes tertulis

Pengamatan

Penugasan

10

3.Menerapkan transformasi bangun datar

Transformasi bangun datar didiskripsikan menurut jenisnya

Tranformasi bangun datar digunakan untuk menyelesaikan permasalahan program keahlian

Jenis-jenis tranformasi bangun datar

Penerapan tranformasi bangun datar

Jenis-jenis tranformasi bangun datar

Translasi

Refleksi

Rotasi

Dilatasi

Penerapan tranformasi bangun datar

Tes tertulis

Pengamatan

Penugasan

10

Buku referensi yang relevan

NAMA SEKOLAH

: SMKN 1 PULAU MAYA KARIMATA

MATA PELAJARAN

: MATEMATIKA

KELAS / SEMESTER

: I / 2

STANDAR KOMPETENSI

: Menerapkan perbandingan, fungsi, persamaan, dan identitas trigonometri dalam pemecahan masalah

KODE

: D 27

ALOKASI WAKTU

: 40 X 45 menit

KOMPETENSI DASAR

INDIKATOR

MATERI PEMBELAJARAN

KEGIATAN PEMBELAJARAN

PENILAIAN

ALOKASI WAKTU

SUMBER BELAJAR

TM

PS

PI

1.Menentukan dan menggunakan nilai perbandingan trigonometri suatu sudut

Perbandingan trigonometri suatu sudut ditentukan dari sisi-sisi segitiga siku-siku

Perbandingan trigonometri dipergunakan untuk menetukan panjang sisi dan besar sudut segitiga siku-siku

Susut-sudut diberbagai kuadran ditentukan nilai perbandingan trigonometrinya

Identitas trigonometri digunakan dalam menyederhanakan persamaan atau bentuk trigonometri

Perbandingan trigonometri

Panjang sisi dan besar sudut segitiga siku-siku

Perbandingan trigonometri di berbagai kuadran

Identitas trigonometri

Menjelaskan pengertian perbandingan trigonometri suatu sudut segitiga siku-siku

Menetukan nilai perbandingan trigonometri suatu sudut segitiga siku-siku

Menentukan panjang sisi dan besar sudut segitiga siku-siku menggunakan perbandingan trigonometri

Menentukan nilai perbandingan trigonometri suatu sudut diberbagai kuadran

Menerapkan konsep perbandingan trigonometri

Menemukan identitas trigonometri, seperti:

sin2 x + cos2 x = 1

tan

a

=

a

a

cos

sin

Menggunakan identitas trigonometri digunakan dalam menyederhanakan persamaan atau bentuk trigonometri

Tes tertulis

Pengamatan

Penugasan

10

Buku referensi yang relevan

KOMPETENSI DASAR

INDIKATOR

MATRI PEMBELAJARAN

KEGIATAN PEMBELAJARAN

PENILAIAN

ALOKASI WAKTU

SUMBER BELAJAR

TM

PS

PI

2.Mengkonversi koordinat kartesius dan kutub

Koordinat kartesius dan koordinat kutub dibedakan sesuai pengertiannya

Koordinat kartesius dikonversi ke koordinat kutub atau sebaliknya sesuai prosedur dan rumus yang berlaku

Koordinat kartesius dan kutub

Konversi koordinat kartesius dan kutub

Menjelaskan pengertian koordinat kartesius dan koordinat kutub

Menggambar letak titik pada koordinat kartesius dan koordinat kutub

Mengkonversi koordinat kartesius ke koordinat kutub atau sebaliknya

Tes tertulis

Pengamatan

Penugasan

2

Buku referensi yang relevan

3.Menerapkan aturan sinus dan kosinus

Aturan sinus digunakan untuk menentukan panjang sisi atau besar sudut oada suatu segitiga

Aturan kosinus digunakan untuk menentukan panjang sisi atau besar sudut oada suatu segitiga

Aturan sinus dan kosinus

Menemukan aturan sinus

Menggunakan aturan sinus untuk menentukan panjang sisi atau besar sudut oada suatu segitiga

Menemukan aturan kosinus

Menggunakan aturan kosinus untuk menentukan panjang sisi atau besar sudut oada suatu segitiga

Tes tertulis

Pengamatan

Penugasan

6

Buku referensi yang relevan

4.Menentukan luas suatu segitiga

Luas segitiga ditentukan rumusnya

Luas segitiga dihitung dengan menggunakan rumus luas segitiga

Luas segitiga

Menjelaskan konsep luas segitiga

Menemukan beberapa rumus luas segitiga yang terkait dengan fungsi trigonometri

Menentukan luas segitiga

Tes tertulis

Pengamatan

Penugasan

4

Buku referensi yang relevan

5.Menerapkan rumus trigonometri jumlah dan selisih dua sudut

Rumus trigonometri jumlah dua sudut digunakan untuk menyelesaiakan soal

Rumus trigonometri selisih dua sudut digunakan untuk menyelesaikan soal

Rumus trigonometri jumlah dan selisih dua sudut

Menggunakan bentuk-bentuk antara lain :

sin (

b

a

)

cos (

b

a

)

tan (

b

a

)

Menerapkan rumus diatas pada

penyelesaian soal

Menemukan rumus sudut rangkap

Menggunakan rumus trigonometri sudut rangkap dalam menyelesaikan soal-soal

Tes tertulis

Pengamatan

Penugasan

12

Buku referensi yang relevan

6.Menyelesaiakan persamaan trigonometri

Persamaan trigonometri ditentukan penyelesaiannya

Persamaan trigonometri

Menyelesaiakan persamaan trigonometri

Tes tertulis

Pengamatan

Penugasan

6

Buku referensi yang relevan

NAMA SEKOLAH

: SMKN 1 PULAU MAYA KARIMATA

MATA PELAJARAN

: MATEMATIKA

KELAS / SEMESTER

: II /

STANDAR KOMPETENSI

: Menentukan kedudukan jarak, dan besar sudut yang melibatkan titik, garis dan bidang dalam ruang dimensi tiga

KODE

: D 28

ALOKASI WAKTU

: 24 X 45 menit

KOMPETENSI DASAR

INDIKATOR

MATERI PEMBELAJARAN

KEGIATAN PEMBELAJARAN

PENILAIAN

ALOKASI WAKTU

SUMBER BELAJAR

TM

PS

PI

1.Mengidentifikasi bangun ruang dan unsur unsurnya

Unsur unsur bangun ruang diidentifikasi berdasar ciri cirinya

Jaring jaring bangun ruang digambar pada bidang datar

Bangun ruang dan unsur unsurnya

Jaring jaring bangun ruang

Mengidentifikasi berbagai bangun ruang ( kubus, balok, prisma, tabung, kerucut, limas, bola )

Mengidentifikasi unsur unsur bangun ruang

Menggambar jaring jaring bangun ruang

Tes tertulis

Pengamatan

Penugasan

4

Buku referensi yang relevan

2.Menghitung luas permukaan bangun ruang

Luas permukaan bangun ruang dihitung dengan cermat

Permukaan bangun ruang dihitung luasnya

Mengidentifikasi bentuk permukaan bangun ruang ( kubus, balok, prisma, tabung, kerucut, limas, bola )

Menghitung luas permukaan bangun ruang

Menerapkan konsep luas permukaan bangun ruang pada program keahlian

Tes tertulis

Pengamatan

Penugasan

4

3.Menerapkan konsep volum bangun ruang

Volum bangun ruang dihitung dengan cermat

Volum bangun ruang

Menemukan rumus volum bangun ruang ( kubus, balok, prisma, tabung, kerucit, limas dan bola )

Menghitung volum bangun ruang

Menerapkan konsep volum bangun ruang pada program keahlian

Tes tertulis

Pengamatan

Penugasan

6

Buku referensi yang relevan

KOMPETENSI DASAR

INDIKATOR

MATERI PEMBELAJARAN

KEGIATAN PEMBELAJARAN

PENILAIAN

ALOKASI WAKTU

SUMBER BELAJAR

TM

PS

PI

4.Menentukan hubungan antara unsur unsur dalam bangun ruang

Jarak antar unsur dalam ruang dihitung sesuai ketentuan

Besar sudut antar unsur dalam ruang dihitung sesuai ketentuan

Hubungan antar unsur dalam bangun ruang

Menghitung jarak antara titik dan titik

Menghitung jarak antara titik dan garis

Menghitung jarak antara titik dan bidang

Menghitung jarak antara garis dan garis

Menghitung jarak antara garis dan bidang

Menghitung jarak antara bidang dan bidang

Menghitung besar sudut antara garis dan garis

Menghitung besar sudut antara garis dan bidang

Menghitung besar sudut antara bidang dan bidang

Tes tertulis

Pengamatan

Penugasan

10

Buku referensi yang relevan

NAMA SEKOLAH

: SMKN 1 PULAU MAYA KARIMATA

MATA PELAJARAN

: MATEMATIKA

KELAS / SEMESTER

: II / 3

STANDAR KOMPETENSI

: Memecahkan masalah yang berkaitan dengan fungsi , persamaan fungsi linier dan fungsi kuadrat

KODE

: D 29

ALOKASI WAKTU

: 34 X 45 menit

KOMPETENSI DASAR

INDIKATOR

MATERI PEMBELAJARAN

KEGIATAN PEMBELAJARAN

PENILAIAN

ALOKASI WAKTU

SUMBER BELAJAR

TM

PS

PI

1.Mendeskripsikan perbedaan konsep relasi dan fungsi

Konsep relasi dan fungsi dibedakan dengan jelas

Jenis jenis fungsi diuraikan dan ditunjukkan contohnya

Relasi dan fungsi

Membedakan pengertian relasi dan fungsi

Menentukan daerah asal ( domain ) , daerah kawan ( kodomain ) , dan daerah hasil ( range )

Menguraikan jenis jenis fungsi ( injektif, surjektif, bijektif )

Aljabar fungsi

Komposisi fungsi

Tes tertulis

Pengamatan

Penugasan

8

Buku referensi yang relevan

2.Menerapkan konsep fungsi linier

Fungsi linier digambar grafiknya

Fungsi linier ditentukan persamaannya jika diketahui koordinat titik atau gradien atau grafiknya

Fungsi invers ditentukan dari suatu fungsi linier

Fungsi linier dan grafiknya

Invers fungsi linier

Membahas contoh fungsi linier

Membuat grafik fungsi linier

Menentukan persamaan grafik fungsi linier yang melalui dua titik , melalui satu titik dan gradien tertentu, dan jika diketahui grafiknya

Menemukan syarat hubungan dua grafik fungsi linier saling sejajar dan saling tegak lurus

Menentukan invers fungsi linier dan grafiknya

Tes tertulis

Pengamatan

Penugasan

6

3.Menggambar fungsi kuadrat

Funsi kuadrat digambar grafiknya

Fungsi kuadrat ditentukan persamaannya

Fungsi kuadrat dan grafiknya

Membahas contoh fungsi kuadrat dan grafiknya

Menentukan titik potong grafik fungsi dengan sumbu koordinat, sumbu simetri dan nilai ekstrim suatu fungsi

Menggambar grafik fungsi kuadrat

Tes tertulis

Pengamatan

Penugasan

2

Buku referensi yang relevan

KOMPETENSI DASAR

INDIKATOR

MATERI PEMBELAJARAN

KEGIATAN PEMBELAJARAN

PENILAIAN

ALOKASI WAKTU

SUMBER BELAJAR

TM

PS

PI

4.Menerapkan konsep fungsi kuadrat

Fungsi kuadrat digambar grafiknya melalui titik ekstrim dan titik potong pada sumbu koordinat

Fungsi kuadrat diterapkan untuk menentukan nilai ekstrim

Fungsi kuadrat dan grafiknya

Menentukan persamaan fungsi kuadrat jika diketahui grafik atau unsur-unsur lainnya

Menentukan nilai ekstrim suatu fungsi kuadrat

Menyelesaiakan masalah program keahlian yang berkaitan dengan fungsi kuadrat

Tes tertulis

Pengamatan

Penugasan

6

Buku referensi yang relevan

5.Menerapkan konsep fungsi eksponen

Fungsi eksponen digambar grafiknya

Fungsi eksponen ditentukan persamaannya jika diketahui grafiknya

Fungsi eksponen dan grafiknya

Membahas contoh grafik fungsi eksponen dan grafiknya

Menentukan grafik fungsi eksponen jika diketahui unsur-unsurnya

Menentukan persamaan grafik fungsi eksponen

Menenrapkan kosep fungsi eksponen pada program keahlian

Tes tertulis

Pengamatan

Penugasan

2

6.Menenrapkan konsep fungsi logaritma

Fungsi logaritma dideskripsikan sesuai dengan ketetuan

Fungsi logaritma diuraikan sifat-sifatnya

Fungsi logaritma digambar grafiknya

Fungsi logaritma dan grafiknya

Membahas contoh fungsi logaritma dan grafiknya

Menentukan grafik fungsi logaritma

Menentukan persamaan grafik fungsi logaritma

Menenrapkan kosep fungsi logaritma pada program keahlian

Tes tertulis

Pengamatan

Penugasan

4

7. Menenrapkan kosep fungsi trigonometri

Fungsi trigonometri dideskripsikan sesuai dengan ketetuan

Fungsi trigonometri digambar grafiknya

Fungsi trigonometri dan grafiknya

Membahas contoh fungsi trigonometri dan grafiknya

Menentukan grafik fungsi trigonometri

Menentukan persamaan grafik fungsi trigonometri

Menenrapkan kosep fungsi trigonometri pada program keahlian

Tes tertulis

Pengamatan

Penugasan

6

NAMA SEKOLAH

: SMKN 1 PULAU MAYA KARIMATA

MATA PELAJARAN

: MATEMATIKA

KELAS / SEMESTER

: II /

STANDAR KOMPETENSI

: Menerapkan konsep barisan dan deret dalam pemecahan masalah

KODE

: D 30

ALOKASI WAKTU

: 30 X 45 menit

KOMPETENSI DASAR

INDIKATOR

MATERI PEMBELAJARAN

KEGIATAN PEMBELAJARAN

PENILAIAN

ALOKASI WAKTU

SUMBER BELAJAR

TM

PS

PI

1.Mengidentifikasi pola, barisan, dan deret bilangan

Pola bilangan, barisan, dan deret diidentifikasi berdasarkan ciri-cirinya

Notasi sigma digunakan untuk menyederhanakan suatu deret

Pola bilangan, barisan, dan deret

Notasi sigma

Menunjukkan pola bilangan dari suatu barisan dan deret

Membedakan pola bilangan, barisan, dan deret

Menuliskan suatu deret dengan notasi sigma

Tes tertulis

Pengamatan

Penugasan

8

Buku referensi yang relevan

2.Menentukan konsep barisan dan deret aritmatika

Nilai suku ke-n suatu barisan aritmatika ditentukan menggunakan rumus

Jumlah n suku suatu deret aritmatika ditentukan menggunakan rumus

Barisan dan deret aritmatika

Suku ke-n suatu barisan aritmatika

Jumlah n suku suatu deret aritmatika

Menjelaskan barisan dan deret aritmatika

Menentukan suku ke-n suatu barisan aritmatika

Menentukan jumlah n suku suatu deret aritmatika

Menyelesaiakan masalah program keahlian yang berkaitan dengan deret aritmatika

Tes tertulis

Pengamatan

Penugasan

10

3.Menentukan konsep barisan dan deret geometri

Nilai suku ke-n suatu barisan geometri ditentukan menggunakan rumus

Jumlah n suku suatu deret geometri ditentukan menggunakan rumus

Jumlah suku tak hingga suatu deret geometri ditentukan menggunakan rumus

Barisan dan deret geometri

Suku ke-n suatu barisan geometri

Jumlah n suku suatu deret geometri

Deret geometri tak hingga

Menjelaskan barisan dan deret geometri

Menentukan suku ke-n suatu barisan geometri

Menentukan jumlah n suku suatu deret geometri

Menjelaskan deret geometri tak hingga

Menyelesaiakan masalah program keahlian yang berkaitan dengan deret geometri

Tes tertulis

Pengamatan

Penugasan

12

Buku referensi yang relevan

NAMA SEKOLAH

: SMKN 1 PULAU MAYA KARIMATA

MATA PELAJARAN

: MATEMATIKA

KELAS / SEMESTER

: II /

STANDAR KOMPETENSI

: Menerapkan konsep vektor dalam pemecahan masalah

KODE

: D 31

ALOKASI WAKTU

: 26 x 45 menit

KOMPETENSI DASAR

INDIKATOR

MATERI PEMBELAJARAN

KEGIATAN PEMBELAJARAN

PENILAIAN

ALOKASI WAKTU

SUMBER BELAJAR

TM

PS

PI

1.Menerapkan

konsep vektor pada bidang datar

Konsep vektor dan ruang lingkup vektor dideskripsikan menurut ciri-cirinya

Operasi pada vektor diselesaiakan dengan rumus yang sesuai

Vektor pada bidang datar

Operasi Vektor

Menjelaskan pengertian Vektor pada bidang datar

Membahas ruang lingkup vektor

Modulus (besar) vektor

Vektor posisi

Kesamaan dua vektor

Vektor negatif

Vektor nol

Vektor satuan

Menyelesaiakan operasi pada vektor

Penjumlahan vektor

Pengurangan dua vektor

Perkalian vektor dengan skalar

Perkalian skalar dua vektor

Menerapkan konsep vektor pada bidang datar dalam program keahlian

Tes tertulis

Pengamatan

Penugasan

10

Buku referensi yang relevan

KOMPETENSI DASAR

INDIKATOR

MATERI PEMBELAJARAN

KEGIATAN PEMBELAJARAN

PENILAIAN

ALOKASI WAKTU

SUMBER BELAJAR

TM

PS

PI

2.Menerapkan

konsep vektor pada bangun ruang

Konsep vektor dan ruang lingkup vektor dideskripsikan menurut ciri-cirinya

Operasi pada vektor diselesaiakan dengan rumus yang sesuai

Vektor pada bangun ruang

Operasi Vektor

Menjelaskan pengertian Vektor pada bangun ruang

Membahas ruang lingkup vektor

Modulus (besar) vektor

Vektor posisi

Kesamaan dua vektor

Vektor negatif

Vektor nol

Vektor satuan

Menyelesaiakan operasi pada vektor

Penjumlahan vektor

Pengurangan dua vektor

Perkalian vektor dengan skalar

Perkalian skalar dua vektor

Menerapkan konsep vektor pada bangun ruang dalam program keahlian

Tes tertulis

Pengamatan

Penugasan

16

Buku referensi yang relevan

NAMA SEKOLAH

: SMKN 1 PULAU MAYA KARIMATA

MATA PELAJARAN

: MATEMATIKA

KELAS / SEMESTER

: II /

STANDAR KOMPETENSI

: Memecahkan masalah dengan konsep teori peluang

KODE

: D 32

ALOKASI WAKTU

: 20 X 45 menit

KOMPETENSI

DASAR

INDIKATOR

MATERI PEMBELAJARAN

KEGIATAN PEMBELAJARAN

PENILAIAN

ALOKASI WAKTU

SUMBER BELAJAR

TM

PS

PI

1.Mendeskripsikan kaidah pencacahan, permutasi dan kombinasi

Kaidah pencacahan permutasi dan kombinasi digunakan dalam menentukan banyaknya cara menyelesaikan suatu masalah

Kaidah pencacahan permutasi dan kombinasi

Menjelaskan pengertian kaidah pencacahan, faktorial, permutasi, dan kombinasi

Menentukan banyaknya cara menyelesaiakan masalah dengan kaidah pencacahan, permutasi, dan kombinasi

Menyelesaiakan masalah dengan kaidah pencacahan, permutasi, dan kombinasi

Tes tertulis

Pengamatan

Penugasan

10

Buku referensi yang relevan

2.Menghitung peluang suatu kejadian

Peluang suatu kejadian dihitung dengan menggunakan rumus

Peluang suatu kejadian

Menjelaskan pengertian ruang sampel, titik sampel, kejadian dan peluang suatu kejadian

Menghitung peluang suatu kejadian

Menghitung nilai kisaran peluang

Menghitung frekuensi harapan

Menghitung peluang kejadian saling lepas

Menghitung peluang kejadian saling bebas

Menerapkan konsep peluang dalam menyelesaikan masalah program keahlian

Tes tertulis

Pengamatan

Penugasan

10

Buku referensi yang relevan

NAMA SEKOLAH

: SMKN 1 PULAU MAYA KARIMATA

MATA PELAJARAN

: MATEMATIKA

KELAS / SEMESTER

: II /

STANDAR KOMPETENSI

: Menerapkan konsep irisan kerucut dalam memecahkan masalah

KODE

: D 33

ALOKASI WAKTU

: 44 X 45 menit

KOMPETENSI

DASAR

INDIKATOR

MATERI PEMBELAJARAN

KEGIATAN PEMBELAJARAN

PENILAIAN

ALOKASI WAKTU

SUMBER BELAJAR

TM

PS

PI

1.Menerapkan konsep Lingkaran

Unsur-unsur lingkaran dideskripsikan sesuai ciri-cirinya

Persamaan lingkaran ditentukan berdasarkan unsur-unsur yang diketahui

Garis singgung lingkaran dilukis dengan benar

Panjang garis singgung lingkaran dihitung dengan benar

Lingkaran dan unsur-unsurnya

Persamaan dan garis singgung lingkaran

Menggambar irisan kerucut

Mendiskripsikan unsur-unsur lingkaran

Menentukan persamaan lingkaran

Menentukan persamaan garis singgung

Melukis garis singgung sekutu dua lingkaran

Menentukan panjang garis singgung sekutu dua lingkaran

Menerapkan konsep lingkaran dalam menyelesaiakan masalah program keahlian

Tes tertulis

Pengamatan

Penugasan

16

Buku referensi yang relevan

2.Mnentukan konsep parabola

Unsur-unsur parabola dideskripsikan sesuai ciri-cirinya

Persamaan parabola ditentukan berdasarkan unsur-unsur yang diketahui

Grafik parabola dilukis dengan benar

Parabola dan unsur-unsurnya

Persamaan parabola dan garfiknya

Menjelaskan pengertian parabola dan bentuknya

Menentukan unsur-unsur parabola:

Direktris

Koordinat titik puncak

Koordinat titik fokus

Persamaan sumbu

Menentukan persamaan parabola

Melukis grafik persamaan parabola

Menerapkan konsep parabola dalam menyelesaiakan masalah program keahlian

Tes tertulis

Pengamatan

Penugasan

10

Buku referensi yang relevan

KOMPETENSI

DASAR

INDIKATOR

MATERI PEMBELAJARAN

KEGIATAN PEMBELAJARAN

PENILAIAN

ALOKASI WAKTU

SUMBER BELAJAR

TM

PS

PI

3.Menerapkan konsep elips

Unsur-unsur elips dideskripsikan sesuai ciri-cirinya

Persamaan elips ditentukan berdasarkan unsur-unsur yang diketahui

Grafik elips dilukis dengan benar

Elips dan unsur-unsurnya

Persamaan elips dan grafiknya

Menjelaskan pengertian elips dan bentuknya

Menentukan unsur-unsur elips:

Koordinat titik puncak

Koordinat titik pusat

Koordinat fokus

Sumbu mayor dan sumbu minor

Menentukan persamaan elips

Melukis grafik persamaan elips Menerapkan konsep elips dalam menyelesaiakan masalah program keahlian

Tes tertulis

Pengamatan

Penugasan

8

Buku referensi yang relevan

4.Mnentukan konsep hiperbola

Unsur-unsur hiperbola dideskripsikan sesuai ciri-cirinya

Persamaan hiperbola ditentukan berdasarkan unsur-unsur yang diketahui

Grafik/sketsa hiperbola dilukis dengan benar

Hiperbola dan unsur-unsurnya

Persamaan hiperbola dan garfik/sketsanya

Menjelaskan pengertian hiperbola dan bentuknya

Menentukan unsur-unsur hiperbola:

Direktris

Koordinat titik puncak

Koordinat titik fokus

Persamaan sumbu

Menentukan persamaan hiperbola

Melukis garfik/sketsa hiperbola

Menerapkan konsep hiperbola dalam menyelesaiakan masalah program keahlian

Tes tertulis

Pengamatan

Penugasan

10

Buku referensi yang relevan

NAMA SEKOLAH

: SMKN 1 PULAU MAYA KARIMATA

MATA PELAJARAN

: MATEMATIKA

KELAS / SEMESTER

: II /

STANDAR KOMPETENSI

: Menggunakan konsep limit fungsi dan turunan fungsi dalam pemecahan masalah

KODE

: D 34

ALOKASI WAKTU

: 42 X 45 menit

KOMPETENSI

DASAR

INDIKATOR

MATERI PEMBELAJARAN

KEGIATAN PEMBELAJARAN

PENILAIAN

ALOKASI WAKTU

SUMBER BELAJAR

TM

PS

PI

1.Menjelaskan secara intuitif arti limit fungsi di suatu titik dan di tak hingga

Arti limit fungsi di satu titik dijelaskan melalui perhitungan nilai-nilai disekitar titik tersebut

Arti limit fungsi di tak hingga dijelaskan melalui grafik dan perhitungan

Pengertian limit fungsi

Mendiskusikan arti limit fungsi di satu titik melalui perhitungan nilai-nilai disekitar titik tersebut

Mendiskusikan arti limit fungsi di tak hingga melalui perhitungan nilai-nilai disekitar titik tersebut

Melakukan kajian pustaka tentang definisi eksak limit fungsi

Tes tertulis

Pengamatan

Penugasan

4

Buku referensi yang relevan

2.Menggunakan sifat limit fungsi untuk menghitung bentuk tak tentu fungsi aljabar dan trigonometri

Sifat-sifat limit digunakan dalam menghitung nilai limit

Bentuk tak tentu dari limit fungsi ditentukan nilainya

Limit fungsi aljabar dan trigonometri dihitung dengan menggunakan sifat-sifat limit

Sifat limit fungsi

Bentuk tak tentu

Menentukan sifat-sifat limit fungsi

Menghitung limit fungsi aljabar dan trigonometri dengan menggunakan sifat-sifat limit

Melakukan perhitungan limit dengan manipulasi aljabar

Mengenal macam-macam bentuk tak tentu

Menghitung nilai limit tak tentu

Menghitung bentuk tak tentu fungsi aljabar dan trigonometri denmgan menggunakan sifat-sifat limit fungsi

Tes tertulis

Pengamatan

Penugasan

8

Buku referensi yang relevan

3.Menggunakan konsep dan aturan turunan dalam perhitungan turunan fungsi

Arti fisis (sebagai laju perubahan) dan arti geometri dari turunan dijelaskan konsepnya

Turunan fungsi yang sederhana dihitung dengan menggunakan definisi turunan

Turunan fungsi dijelaskan sifat-sifatnyA

Turunan fungsi

Mengenal konsep laju perubahan nilai fungsi dan gambaran geometrisnya

Dengan menggunakan konsep limit merumuskan pengertian turunan fungsi

Dengan menggunakan aturan turunan menghitung turunan fungsi aljabar

Menurunkan sifat-sifat turunan dengan menggunakan sifat limit

Menentukan berbagai turunan fungsi aljabar dan trigonometri

Tes tertulis

Pengamatan

Penugasan

10

Buku referensi yang relevan

KOMPETENSI

DASAR

INDIKATOR

MATERI PEMBELAJARAN

KEGIATAN PEMBELAJARAN

PENILAIAN

ALOKASI WAKTU

SUMBER BELAJAR

TM

PS

PI

Turunan fungsi aljabar dan trigonometri ditentukan dengan menggunakan sifat-sifat turunan

Turunan fungsi komposisi ditentukan dengan menggunakan aturan rantai

Menentukan turunan fungsi dengan menggunakan aturan rantai

Melakukan latihan soal tentang turunan fungsi

4.Menggunakan turunan untuk menentukan karakteristik suatu fungsi dan memecahkan masalah

Fungsi monoton naik dan turun ditentukan dengan menggunakan konsep turunan pertama

Sketsa grafik fungsi digambarkan dengan menggunakan sifat-sifat turunan

Titik ekstrim grafik fungsi ditentukan koordinatnya

Garis singgung sebuah fungsi ditentukan persamaannya

Karakteristik grafik fungsi berdasar turunannya

Mengenal secara geometris tentang fungsi naik dan turun

Mengidentifikasi fungsi naik atau fungsi turun menggunakan aturan turunan

Menggambar sketsa grafik fungsi dengan menentukan perpotongan sumbu koordinat, titik stasioner, dan kemonotonannya

Menentukan titik stasioner suatu fungsi beserta jenis ekstrimnya

Menentukan persamaan garis singgung fungsi

Tes tertulis

Pengamatan

Penugasan

10

Buku referensi yang relevan

5.Menyelesaiakan model matematika dari masalah yang berkaitan dengan ekstrim fungsi dan penafsirannya

Masalah-masalah yang bisa diselesaiakan dengan konsep ekstrim fungsi disusun model matematikanya

Model matematika dari maslah yang berkaitan dengan ekstrim fungsi ditentukan penyelesainnya

Model matematika ekstrim fungsi

Menentukan variabel-variabel (x dan y) dari masalah ekstrim fungsi

Menyatakan masalah nyata dalam kehidupan sehari-hari dibentuk ke dalam model matematika

Menentukan penyelesaikan model matematika dengan menggunakan konsep ekstrim fungsi

Tes tertulis

Pengamatan

Penugasan

10

Buku referensi yang relevan

NAMA SEKOLAH

: SMKN 1 PULAU MAYA KARIMATA

MATA PELAJARAN

: MATEMATIKA

KELAS / SEMESTER

: III / 1

STANDAR KOMPETENSI

: Menggunakan konsep integral dalam pemecahan masalah

KODE

: D 35

ALOKASI WAKTU

: 46 X 45 menit

KOMPETENSI

DASAR

INDIKATOR

MATERI PEMBELAJARAN

KEGIATAN PEMBELAJARAN

PENILAIAN

ALOKASI WAKTU

SUMBER BELAJAR

TM

PS

PI

1.Memahami konsep integral tak tentu dan integral tentu

Fungsi aljabar dan trigonometri ditentukan integral tak tentunya

Fungsi aljabar dan trigonometri ditentukan integral tentu-nya

Menyelesaikan masalah yang melibatkan integral tentu dan tak tentu

Integral tak tentu

Integral tentu

Mengenal integral tak tentu sebagai anti turunan

Menentukan integral tak tentu dari fungsi sederhana

Merumuskan integral tak tentu dari fungsi aljabar dan trigonometri

Merumuskan sifat sifat integral tak tentu

Mengenal integral tentu sebagai luas daerah dibawah kurva

Mendiskusikan teorema dasar kalkulus

Merumuskan sifat integral tentu

Menyelesaikan masalah aplikasi integral tak tentu dan integral tentu

Tes tertulis

Pengamatan

Penugasan

20

Buku referensi yang relevan

2.Menghitung integral tak tentudan integral tentu dari fungsi aljabar dan fungsi trigonometri yang sederhana

Nilai integral suatu fungsi ditentukan dengan cara substitusi

Nilai integral suatu fungsi ditentukan dengan cara parsial

Nilai integral suatu fungsi ditentukan dengan cara substitusi trigonometri

Teknik pengintegralan

1. Substitusi

2. Parsial

3. Substitusi trigonometri

Nilai integral suatu fungsi ditentukan dengan cara substitusi

Nilai integral suatu fungsi ditentukan dengan cara parsial

Nilai integral suatu fungsi ditentukan dengan cara substitusi trigonometri

Menggunakan teknik pengintegralan untuk menyelesaikan masalah

Tes tertulis

Pengamatan

Penugasan

10

Buku referensi yang relevan

KOMPETENSI

DASAR

INDIKATOR

MATERI PEMBELAJARAN

KEGIATAN PEMBELAJARAN

PENILAIAN

ALOKASI WAKTU

SUMBER BELAJAR

TM

PS

PI

3.Menggunakan integral untuk menghitung luas daerah dibawah kurva dan volum benda putar

Daerah yang dibatasi oleh kurva dan / atau sumbu sumbu koordinat dihitung luasnya menggunakan integral

Volum benda putar dihitung dengan menggunakan integral

Luas daerah

Volume benda putar

Menggambar grafik grafik fungsi dan menentukan perpotongan grafik fungsi sebagai batas integral

Menentukan luas daerah dibawah kurva dengan menggunakan integral

Menyelesaikan soal yang berkaitan dengan luas daerah dibawah kurva

Mendiskusikan cara menentukan volume benda putar ( menggambar daerahnya , batas integrasi )

Menghitung volum benda putar dengan menggunakan integral

Tes tertulis

Pengamatan

Penugasan

16

Buku referensi yang relevan

NAMA SEKOLAH

: SMKN 1 PULAU MAYA KARIMATA

MATA PELAJARAN

: MATEMATIKA

KELAS / SEMESTER

: III /

STANDAR KOMPETENSI

: Menerapkan aturan konsep statistika dalam pemecahan masalah

KODE

: D 36

ALOKASI WAKTU

: 40 X 45 menit

KOMPETENSI

DASAR

INDIKATOR

MATERI PEMBELAJARAN

KEGIATAN PEMBELAJARAN

PENILAIAN

ALOKASI WAKTU

SUMBER BELAJAR

TM

PS

PI

1.Mengidentifikasi pengertian statistik, statistika, populasi dan sampel

Statistik dan statistika dibedakan sesuai dengan definisinya

Populasi dan sampel dibedakan berdasarkan karakteristiknya

Pengertian statistik dan statistika

Pengertian populasi dan sampel

Macam macam data

Menjelaskan pengertian dan kegunaan statistika

Membedakan pengertian populasi dan sampel

Menyebutkan macam macam data dan memberi contohnya

Tes tertulis

Pengamatan

Penugasan

2

Buku referensi yang relevan

2.Menyajikan data dalam bentuk tabel dan diagram

Data disajikan dalam bentuk tabel

Data disajikan dalam bentuk diagram

Tabel dan diagram

Menjelaskan jenis jenis tabel

Menjelaskan macam macam diagram ( batang, lingkaran, garis, gambar ) , histogram, poligon frekuensi, kurva ogive

Mengumpulkan dan mengolah data serta menyajikannya dalam bentuk tabel dan diagram

Tes tertulis

Pengamatan

Penugasan

4

Buku referensi yang relevan

3.Menentukan ukuran pemusatan data

Mean, median dan modus dibedakan sesuai dengan pengertiannya

Mean, median dan modus dihitung sesuai dengan data tunggal dan data kelompok

Mean

Median

Modus

Menghitung mean data tunggal dan data kelompok

Menghitung median data tunggal dan data kelompok

Menghitung modus data tunggal dan data kelompok

Tes tertulis

Pengamatan

Penugasan

16

Buku referensi yang relevan

4.Menentukan ukuran penyebaran data

Jangkauan, simpangan rata rata, simpangan baku, jangkauan semi inter kuartil ditentukan dari suatu data

Jangkauan

Simpangan rata rata

Simpangan baku

Jangkauan semi inter kuartil

Menyajikan data tunggal dan data kelompok

Menentukan jangkauan, simpangan rata rata, simpangan baku, dan jangkauan semi inter kuartil dari data yang disajikan

Tes tertulis

Pengamatan

Penugasan

18

Buku referensi yang relevan

PAGE

19

SILABUS MATEMATIKA SMK KELOMPOK TEKNOLOGI, KESEHATAN DAN PERTANIAN halaman

_1219841638.unknown

_1219841773.unknown

_1219841692.unknown

_1219773879.unknown

Recommended

View more >