Shmeiwseis Eisagwgh Sth Mikrooikonomikh 2015

  • Published on
    14-Apr-2016

  • View
    245

  • Download
    3

DESCRIPTION

mikrooikonomia

Transcript

  • 1

    M T

    OIKONOMIKH

    K K B : 406 : (2310) 891 783 E-mail: vele@uom.gr

    2015

  • 2

    1. - . 3 2. .. 11 3. . 13 4. .. 23 5. ... 44 6. .. 50 7.

    .. 62 8. 79 9. .... 104

  • 3

    . - ) - .

    , - .

    )

    - (.. , ).

  • 4

    )

    : . :

    .

  • 5

    : (.. ).

    : - (.. ).

    : .

    : .

    : .

    : .

    : .

    ) , .

  • 6

    (.. ) (.. )

    . - .

  • 7

    .

    : .

    : - .

    : .

    ) : .

    - (;)

  • 8

    `: - .

    : - .

    : .

    : , .

    ) : - , . : - , .

    , - :

    Q = f(N, L, K, )

    : Q = , N = , L = , K = . :

    Q = L K

  • 9

    ) - . : ) , ) ) . , - . : () () . - . , .

    : : Keynes,

    . .

  • 10

    : C C C2 C1 0 Y1 Y2 Y

    , 1 2 C1 C2.

    : C = + ( > 0 > 0), C ( ) ( ). C/ = > 0.

  • 11

    .

    .

  • 12

    ()

    : 1) 2)

    . . . . .

    . . .

  • 13

    . ) :

    1

    . 2 .

    3 () -

    .

    )

    ,

    - ,

    - ,

    - -,

    - . .

  • 14

    , . - .

    100 0 80 40 60 70 40 90 20 100 0 105

    : 1. , . , .

    2. - .

    (), (), .

  • 15

    100 80 60 40 20 0 40 52 70 90 100 105

    , , , , .

    . , 40 , 90 .

    , .

  • 16

    ) : (1) , (2) -.

    2 1 0 1 2

    1 2 0 2 1

    .

    .

  • 17

    2 1 0 1 2

    2 1 0 1

    1 0 1 2

    .

    11 21.

    11 12.

  • 18

    ) , .. , , .. , .

    . . =

    ()

    ()

    100 200 150 100

    . = 100/50 = 2 . = 50/100 = 1/2

  • 19

    )

    (1)

    . .

    (2)

    (3)

    (4)

    (5)

    100 0 80 40 20/40 = 0,50 40/20 = 2,00 60 70 20/30 = 0,66 30/20 = 1,50 40 90 20/20 = 1,00 20/20 = 1,00 20 100 20/10 = 2,00 10/20 = 0,50 0 105 20/5 = 4,00 5/20 = 0,25

    (4) (5) . - , . , . .

  • 20

    1 2

    3

    4

    5

    5

    4

    3

    2

    1

    , , .

    . 4 2 1 0,66 0,5 0 40 70 90 100 105

    . 2 1,5 1 0,5 0,25 0 20 40 60 80 100

    1 .

    2 .

  • 21

    : , , , . , , .

    - .

    ) ,

    .

    .

    . . , .

  • 22

    0 200 0 160

    20 160 10 120

    40 120 20 80

    60 80 30 40

    80 40 40 0

    100 0

    = 60 + 30 = 90 . = 80 + 40 = 120 .

    = 100 + 0 = 100 . = 160 + 0 = 160 .

    `, - . `, - .

    . 5,04020

    . 22040

    E

    E

    . 25,04010

    . 41040

    E

    E

  • 23

    V. 1)

    ) - .

    U = f (q1, q2, , qn),

    U = (), qi = i, i = 1, 2, , n.

    .

    )

    1, 2, , n .

    () . :

    M = 1q1 + 2q2 + + nqn.

    .

  • 24

    )

    -

    , . , :

    : U = f (q1, q2, , qn) : M = 1q1 + 2q2 + + nqn

    :

    1dq = h1 (1, 2, , n, M)

    dnq = hn (1, 2, , n, M)

    - :

    1dq = g1 (1, 2, , n, M, )

    dnq = gn (1, 2, , n, M, )

    : diq i.

    , , , .

  • 25

    qdx

    qdx

    2)

    )

    dx

    x

    q =P (;) : Px

    : dx

    x

    qP < 0. -

    . .

    : .

  • 26

    -

    : . d 50 - - - - 20 - - - - - - - -

    0 60 100 q

    () : .

    + d dB P D 30 30 25 25 10 10 0 20 40 65 q 0 15 55 q 0 20 55 120 Q

    : .

    .

  • 27

    D D1 D2

    : - ( ). , . D 2 1 0 Q0 Q1 Q

    : ( ). - , -. 1

    0 Q0 Q1 Q2 Q

    1 2 - Q1 Q0 (- ).

    , .

  • 28

    Qx Q P

    D D1

    )

    x

    Q =P (;) , -.

    : . : `: x

    QP < 0. .

    , . 1

    0 Q0 Q1 Q

    -

    - .

  • 29

    Qx

    Q P

    D1 D

    () : . . : `: x

    QP > 0. .

    , . 1

    0 Q0 Q1 Q

    : . , : x

    QP = 0.

    .

  • 30

    Qx

    D1 D

    )

    xQ =M (;) , .

    : .

    :

    `: xQM > 0. . , . 1

    0 Q0 Q1 Q

    .

  • 31

    Qx

    D D1

    : .

    :

    `: xQM < 0. . , . 1

    0 Q0 Q1 Q

    : . : xQM = 0.

    .

  • 32

    D1 D

    )

    xQ = (;) - : 1

    0 Q0 Q1 Q : , , .

    : xQ > 0. ,

    .

  • 33

    3)

    ) : y = f(x), : y = x = .

    (%) y x = (%) x

    y x

    y y x ln yyE = = = x x y ln x

    x

    Eyx (%) y x 1%. , yx = 1,4. x 1% y 1,4%.

    Eyx x y.

  • 34

    ) :

    DxQ = f (X, y, M, )

    - , .

    , , .

    ( ), .

  • 35

    Q Q

    .1)

    :

    (%) D = (%) D = =

    : 1. D

    (Q/ < 0). 2. D :

    - -1 0

    Q . Q

    D (%) 1%.

  • 36

    A D

    3. D .

    0 QB Q Q

    - ( ):

    B

    B

    B B

    P + PQ - Q 2E = Q + QP - P

    2

    - ( ):

    D = (-) = (-)

    = (-)

    - :

    B BD B B

    Q -Q PE = P -P Q

    - :

    D

    Q -Q PE = P -P Q

  • 37

    (AB = B)

    DI =

    D = 0

    DI = 1

    4. D, .

    P*

    0 Q* Q

    D :

    D D D 0 Qo Q 0 Q 0 Q

    D = 0 DE = 1DE

    :

    D = (-)

  • 38

    D

    A

    ` :

    Qx = 40 - 5Px - 8 4 0 20 40 Qx - x = 4 .. x = 4 . . : Qx = 40 - 5 (4) = 20 . D = = - 5 (4/20) = - 5/5 = - 1. D 1% 1%.

    x = 0 => Qx = 40 Qx = 0 => Px = 8.

    dQx . x dx Qx

  • 39

    .1.1)

    (x) , .. x, (x) (Qx). , (TRx) x. :

    x TRx = Px . Qx x Dx 1 A 0 Q1 Qx , . , , ( ) , - . . x : 1 1 1

    x xx x x xx x x x xx x xx

    x x x x x

    P Q Q P QQ P Q Q Q

    P P P Q P

    xx x (xx < 0).

    Dx x. 1 Q1, x :

    x = Px . Qx = P1 . Q1 = P1 . Q1 = (P1Q1)

  • 40

    :

    1xx 0 x

    x

    P .

    1xx 0 xxP .

    1xx 0 x

    x

    P .

    - x, .

    D D D > 1

    : PQ ( < 0) : PQ ( > 0)

    D = 1

    __ : PQ ( = 0)

    __ : PQ ( = 0)

    D < 1

    : PQ ( > 0) : PQ ( < 0)

    x , x ( ) .

    , ( -) . . , , ( ) - .

  • 41

    200

    100

    50

    A1

    TEx

    x : Qx = 600 - 2x. x (Qx), (x = Px . Qx) x ( x xxx

    x x

    dQ PdP Q

    2xx

    dQdP

    ). , x 50, 100, 150, 200 250 . x 50 100 150 200 250 Qx 500 400 300 200 100

    x 25.000 40.000 45.000 40.000 25.000 xx -0,2 -0,5 -1 -2 -5 , , x (Dx) x (TEx). Px 300 250 150 A Dx 0 100 200 300 400 500 600 Qx TEx 45.000 40.000 25.000 0 100 200 300 400 500 600 Qx

    x 150 300 , , 0 150 . x = 150 . 300 150 0 300 ., . ( 1) 150 , 300 . 150 , . 0 150 600 300 ., . 150 .

    - .

  • 42

    Qx Qx

    .2)

    .. :

    (%) = (%) = = :

    > 0 : .

    < 0 : .

    = 0 : .

    Qx . Qx

    (%) 1%.

  • 43

    Qx Qx

    .3)

    :

    (%) = (%) = =

    :

    = 0 : .

    < 0 : .

    > 0 : . -.

    < 1 : .

    > 1 : .

    Qx . Qx

    (%) 1%.

  • 44

    V. 1) : .

    : sx

    x

    Q >0P . .

    : = TR - TC ( = , TR = TC = ). :

    Px TR Q sx . `:

    sx

    x

    Q >0P .

  • 45

    2)

    ) : . s 2 1 0 q1 q2 q ) () : . + s s P S 50 50 30 30

    0 50 70 q 0 20 30 q 0 70 100 Q

    .

  • 46

    S S1 S2

    ) : ( ). `, - .

    S 2 1 0 Q1 Q2 Q ) : ( ). . 1

    0 Q0 Q1 Q2 Q

    1 2 Q1 Q2 ( - ).

    , .

  • 47

    S1 S

    3)

    : ) ) .

    ) :

    1

    0 Q1 Q2 Q

    -

    - S S1.

  • 48

    )

    , . , . ,

    . , .

    ,

    . , .

  • 49

    Q Q

    4)

    : (%) s = (%) s = = : 1. s

    (Q/ > 0). 2. s : 0 1

    Q . Q

    s (%) 1%.

  • 50

    V.

    1)

    ) : .

    , (Q) (L) (), :

    Q = f(L, K).

    , .

    ) : . , , . , (Q) (L) (), , .. . , :

    Q = f(L, K).

    , . .

  • 51

    2) ) (T): -. : 1 2, , , nTP Q f x x x .

    ) (Pxi): xi. :

    x

    ii

    TPAPx

    .

    ) (Pxi): , xi. :

    x iiTPMPx

    .

    , Q = f(L, K), L , (APL) (MPL) :

    APL = Q/L MPL = Q/L.

  • 52

    () ()

    (L) TP APL MPL

    10 0 0 - 10 1 10 10,0 10 10 2 26 13,0 16 10 3 45 15,0 19 10 4 62 15,5 17 10 5 74 14,8 12 10 6 78 13,0 4 10 7 78 11,1 0 10 8 72 9,0 -6

    :

    LTPAPL

    LTPMPL

    .

    : . , .

  • 53

    3)

    : . . :

    : . , - , - .

    : . , - .

    : . - .

  • 54

    4) ) : , - .

    . .

    - - .

  • 55

    1

    )

    TP

    0 L1 L2 L3 L4 L5 L APL MPL APL

    0 L1 L2 L4 L MPL

  • 56

    :

    1. . , . , . .

    2. PL PL.

    3. PL , , .

    4. PL PL .

    -

    ( ) APL . .

    ( ) ,

    PL . .

    ,

    . PL , PL, (PL>0) PL> PL.

  • 57

    5) )

    :

    (FC): - . FC .

    (VC): . .

    (TC): TC = FC + VC. . TC FC VC TC FC VC 0 Q1 Q

  • 58

    (FC): .

    QFCAFC

    (VC): .

    QVCAVC

    (TC): .

    AVCAFCQTCATC

    (C): .

    QTCMC

    : FC :

    QVCMC

    C VC.

  • 59

    A

    B

    AFC, AVC, ATC MC MC ATC AVC AFC 0 Q

    :

    1. MC AVC ATC. 2. AVC ATC . , , . -. 3. AFC , .

  • 60

    ) , . - (C), .

    , .

    AC ATC1 ATC2 ATC3 1 AC

    0 Q1 Q

    , .

  • 61

    - . , , . , , -. , .

    AC AC AC AC AC AC 0 Q 0 Q 0 Q

  • 62

    V. 1)

    .

    Dx Sx 2 * P1 0 Q* Q

    *. . :

    QD = QS ( ).

    :

    2 (2 > *), ( - ). . :

    QS = 2 QD = 2 = QS - QD =

  • 63

    1 (1 < *), ( ). . :

    QS = 1 QD = 1

    ` :

    QD = 45 - 5P QS = 15 + 10P.

    9 D S A 2 0 15 35 45 Q -1,5

    : QD = QS = Q. : 45 - 5 = 15 + 10 => 15 = 30 => = 2.

    = 2 : Q = 45 - 5(2) = 35.

    = QD - QS =

    - P = 0 => QD = 45, QD = 0 => P = 9. - P = 0 => QS = 15, QS = 0 => P = -1,5 ( ).

  • 64

    = 3, :

    QS = 15 + 10(3) = 45 QD = 45 - 5(3) = 30

    = 1, :

    QS = 15 + 10(1) = 25 QD = 45 - 5(1) = 40

    2) -

    . ` , : (-) .

    ( ) , . , -. , .

    ,

    , ( -), . , ( - ), .

    => = 45 - 30 = 15 .

    => = 40 - 25 = 15 .

  • 65

    D S 1 1 . * . 0 Q* Q

    D S 1 * . - , . 0 Q* Q

  • 66

    3) .

    -

    ) P D2 S D1 P2 B P1 A 0 Q1 Q2 Q , :

    = P2 > 1 = Q2 > Q1.

    , .

    , : = 1 = Q1.

  • 67

    ) P S1 D S2 P1 A P2 0 Q1 Q2 Q , - .. , . , , , . ` -, . :

    = P2 < 1 = Q2 > Q1.

    , .

    , : = 1 = Q1.

  • 68

    )

    P D1 D2 S1 S2 S3 S4 P1 P 0 Q1 Q

    - . , . , .

    . , .

    , : = 1 = Q1.

  • 69

    , ( ) ( ), .

    P (;) , Q P , Q P , Q (;) P , Q ---- P , Q P , Q (;) P , Q P (;) , Q

    , , . , - .

    P

    A

    S1

    S2

    S3

    D1

    D2

    P3

    P2

    P1

    0 Q1 Q2 Q3 Q

    D1 D2

  • 70

    , P1 Q1. D1D1 D2D2 . S1, , . S2, S3, , . , , , . , , , .

    , . .

    , , .

  • 71

    , . .

    P

    A

    S1

    S2

    D3

    D1 D2

    P1

    P2

    0 Q1 Q2 Q3 Q

    P3

    S1

    S2

    , S1 D1, D2 D3. P1 Q1. S1S1 S2S2 , , , . , D2, , . , P1 P3 Q1 ( ). , , D3, (P1) Q1 Q3 ( ).

  • 72

    1S 1D

    A A1

    D

    D

    1

    ) , .

    S S 2 2x 1 1x

    0 2Q 1Q Q 0 1Q 2Q Q

    .

    ( ). , 1. .

    . , 1. -.

  • 73

    4)

    )

    S 3 2 D3 D2 1 D1 0 Qo Q

    , (Q). , -. , - .

    ,

    .

    . : = 1 = Q

  • 74

    )

    . .

    D S 2 * 1

    0 Q1 Q* Q 1.

    , . 1. , , Q1 2. 2 - 1.

    * Q*.

  • 75

    B

    A

    )

    , -, .

    P S2 S1

    P2 = 17

    P1 = 10 D

    0 Q2 = 180 Q1 = 300 Q - :

    1 = P1 Q1 = (10) (300) = 3.000 ..

    - 120 , . :

    .. .QPTE. Q.. P

    060318017180

    17

    222

    2

    2

    , . ,

    57030010

    1017300180

    ,

    QP

    PQED

    .

    Q1 = 300 1 = 10 ( ).

  • 76

    ) t

    P D S2 S1 P2 P1 P3 0 Q2 Q1 Q

    t . , - . - . :

    = 2 = Q2

    ,

    : () (Q2)

    , ,

    , , .

    . : = 1 = Q1

  • 77

    )

    : .

    : -

    - .

    : .

  • 78

    .

    100 S 62 5 D 0 228 600 Q

    228 . = (). = ().

    , (..) = ().

    332.42

    228621002

    BEAB.. .

    = . = .

    , (..) = .

    498.62

    2285622

    BEB.. .

    :

    PE = 62 QE = 228

  • 79

    V. )

    1)

    : , . . , , .

    ) . ) .

    -. , = *.

    ) .

    - .

  • 80

    2) ) (TR):

    QPTR ) (R):

    PQ

    QPQ

    TRAR ) (R): P

    QQP

    QTRMR

    TR, AR MR .

    R

    P P = AR = MR

    0 Q

    : 1) -. 2) MR = P , . 3) MR R .

  • 81

    3)

    (TC) (TR) .

    TR TC TC TR N2 A B N1 B

    0 Q1 Q2 Q3 Q : 1. . 2. Q2 . 3. 1 2 TC > TR, < 0 (). . 4. 1 2, TR = TC = 0. 1 2 . 5. 1 2, TR > TC > 0. .

    : = TR-TC

  • 82

    4)

    TR TC () TR TC. :

    = TR(Q) - TC(Q)

    :

    = TR- TC = 0 (TR= MR TC= MC),

    :

    MR - MC = 0 MR = MC ( ) < 0.

    , MR = MC.

    MR > MC

    TR , TC. , .

    MR < MC, .

  • 83

    B

    4.1) - . MC ATC AR = P = MR 0 Q1 Q2 Q MC > MR.

    , . MR = MC.

    MR > MC. MR = MC.

    MR = MC - . , , .

  • 84

    :

    , Q2.

    : :

    ) MR = MC,

    ) MC MR. MC .

    : : TR = P Q TC = ATC Q. :

    = TR - TC = [(P Q) - (ATC Q)] => = Q(P - ATC). , (P - ATC).

    = TR - TC TR = P Q = () () = () ATC = TC/Q => TC = ATC Q TC = () () = ()

    = () - () = ()

    = TR - TC TR = P Q = () (Z) = () TC = ATC Q = () () = ()

    = () - () = ()

  • 85

    ATC AVCMC

    P1 P2 P3 P4

    A

    MR1 MR2 MR3 MR4

    P1 P2 P3

    P4

    SA

    B

    4.2) () ()

    0 Q1 Q2 Q3 Q4 Q 0 Q1 Q2 Q3 Q4 Q () ()

    - P1 Q4 . ( , MR1 = MC). :

    = Q(P - ATC) = (Q4) (AE)

    - To . P1 Q4 . ( () ).

    - P2 = 0, P2 = ATC. , ; , FC. , FC. .

    - P3, VC FC, FC

  • 86

    ATC MC P1

    P2

    A

    MR1

    MR2

    P1

    P2 2

    D S1 S21

    . , - , FC. .

    - P4 . , VC, FC, - .

    : - MC AVC.

    4.3)

    () ()

    0 q1 q2 q 0 Q1 Q2 Q

    () ()

    - 1. :

    = P1 = Q1.

  • 87

    - P1 q2 . . :

    = q(P - ATC) = (q2) (AB).

    - . ( ) . . = 0. 2. , .

  • 88

    ) 1)

    : 1. , . ,

    / Q < 0.

    2. , .

    ) . ) .

    - . ,

    = f(Q). , - .

    ) .

    .

  • 89

    2) = f(Q). :

    P = - Q. : TR = PQ = ( - Q)Q = Q - Q2, : AR = TR/Q = P = - Q MR = dTR/dQ = - 2Q. MR < AR.

    MC

    P1 ATC AR 0 Q1 Q MR , . , Q1, 1. :

    MR = MC.

    = TR - TC TR = P Q = (P1) (Q1) = (P1AQ1) TC = ATC Q = (Q1B) (Q1) = (BQ1)

    = (P1AQ1) - (BQ1) = (P1A)

  • 90

    3)

    . . , .

    , . ( 1E AD ) ( 1E BD ).

    AAA QPTR BBB QPTR . , , , .

    1E AD : . QA => TRA 1E BD : B . QB => TRB

    ==> < B

  • 91

    4)

    ... (((MMMRRR)))

    p = f(q) , p , q dp/dq < 0. (TR) :

    TR = pq = f(q)q (1)

    (AR) , , :

    AR = TR/q = pq/q = p

    (2) (MR) . , (1) :

    11AR

    11pdqdp

    pq1p

    dqdpqp

    dq)q(dfq)q(f

    dqq)q(fd

    dqdTRMR (3)

    . < 0. (3) :

    ||11AR

    ||11pMR (4)

    (4) : ) (q > 0), (MR < p). dp/dq = 0 . , (MR = p). ) | | > 1, MR > 0. | | = 1, MR = 0 | | < 1, MR < 0. ) (p) (MR) ( ) . ) () :

  • 92

    pMRp

    pMR1

    ||1

    ||11

    pMR

    ||11pMR

    MRpp|| (5)

    , , MR = MC ( = ). (4) MR MC :

    ||11

    pMC

    ||11pMC

    ||11pMR

    (6)

    (6) : ) (p) (MC), , ( ) . ) (MC > 0) :

    11 0| | | | > 1

    , . . , , . .

    : p = 400 2q, p q . , (TR) (R) :

    TR = pq = (400 2q)q => TR = 400q 2q2 R = dTR/dq = (400q 2q2)' => MR = 400 4q

    q > 0 p = R > MR. ( ) (R: q = 0, R = p = 400 R = p = 0, q = 200, MR: q = 0, MR = 400 MR = 0, q = 100).

  • 93

    q = 80 . :

    p = 400 2(80) = 240 MR = 400 4(80) = 80

    () :

    5,180240

    21

    qp

    dpdq | | = 1,5

    : p = 400 2q, , dp/dq = 2 dq/dp = 1/2. (5):

    5,180240

    240MRpp||

    , , q = 80 ., (4):

    805,15,0240

    5,111240

    ||11pMR

    q* = 50 . :

    p* = 400 2q* = 400 2(50) = 300 MR* = 400 4q* = 400 4(50) = 200

    | * | = 3 | | = 1,5

    B

    A

    p, MR

    AR = p MR

    50 80 100 200 q 0

    80

    200 240

    300

    400

  • 94

    dq p * 1 300* 3dp q * 2 50

    | *| = 3 . , | | = 1,5 ( ), p MR = 240 80 = 160 , | *| = 3 ( ), p* MR* = 300 200 = 100 . ... LLLeeerrrnnneeerrr

    p > MC. . Lerner (L), :

    p MCL

    p (7)

    Lerner 0 1 (0 L 1 ). p = MC, L = 0. . , Lerner . (MR = MC) MC 11p | | ( 6). :

    MC 1 1 MC p MC1 1p | | | | p p

    , , Lerner :

    1L

    | | (8)

    (8), ( ) , .

  • 95

    1. (p), (MR) (MC) .

    MC

    B

    A

    AR = p MR

    480 540 1.080 q 0

    60

    300

    540

    p, MR MC

    MR = MC. , q = 480 . p = 300 . Lerner :

    p MC 300 60L 0,8p 300

    , . . (8) :

    25,18,0

    1L1||

    ||1L

    | | >1,25, L < 0,8. 2. p = 600 2q, 2 ( = 2). , Lerner , .

  • 96

    : 100q600q6

    qq26005,02

    qp

    dpdq .

    :

    p = 600 2q = 600 2(100) = 400

    O Lerner :

    5,021

    ||1L

    Lerner :

    200MC400

    MC4005,0pMCpL

    MR = MC. , (TR) TR = pq = (600 2q)q = 600q 2q2 R = dTR/dq = (600q 2q2)' = 600 4q. q = 100 . :

    R = 600 4q = 600 4(100) = 200 .

  • 97

    ) 1)

    : 1. . 2. , .

    ) ( ). ) ( ).

    -. ,

    = f(Q). , - , .

    ) .

    - .

  • 98

    2)

    E MC P1 ATC AR 0 Q1 Q MR - ( AR) , , .

    - MR = MC. . , Q1, P1. :

    -. , P = f(Q) P/Q < 0.

    TR = P Q = (P1) (Q1) = (P1Q1) TC = ATC Q = (Q1B) (Q1) = (BQ1)

    = (P1Q1) - (BQ1) = (P1)

  • 99

    3)

    . , . . = 0. = Q(P - ATC) = 0, P = ATC.

    MC ATC 1 AR = P 0 Q1 Q MR

    :

    MR = MC. , Q1 . 1.

    TR = P Q = (P1) (Q1) = (P1Q1) TC = ATC Q = (Q1B) (Q1) = (P1BQ1) = 0

  • 100

    V)

    1) ) . , , .

    ) . , .. .

    : , .

    2) -

    )

    , . , - , .

    )

    , .

  • 101

    ) , :

    = + [ ] ,

    : )

    . . , ( ).

    ) , .

    .

    = 20 = 25%

    = 20 + (20 0,25) = 25

  • 102

    3) Paul Sweezy 1939 .

    3 1 2 0 Q1 Q , . . 2 (1 2) . . 2 . 3 (1 3) . . 3

    ` Q1 . P1 ( ).

  • 103

    , . - .

    ,

    . , .

    ,

    . , .

  • 104

    Arnold, A.R. " ", 7 , , , 2007. Begg, D., Fischer, S. and Dornbusch, R. "Economics", 8th ed., McGraw - Hill Companies,

    New York, 2005. , . "E :

    ", `, E E. M, A. 2011.

    Besanko, D. Braeutigam, R. "", E Gutenberg, , 2009. Chacholiades, M. " ", E , A, 1990. , ., , ., , ., , ., , .

    , . " ", , . , 2007.

    Mankiw, N.G. "Principles of Economics", Dryden Press, Orlando, 1998. Mankiw, N.G. and Taylor, P.M. " ", Gutenberg,

    , 2010. Mansfield, E. "Principles of Microeconomics", Northon Company, New York, 1984. Orchard, E.W., Glen, J. and Eden, J. "Business Economics", Blackwell, Oxford, 1997. Parkin, M., Powell, M. Matthews, K. " ", , ,

    2013. Samuelson, P. and Nordhaus, W. "", 16 ,

    , , 2000. Stiglitz, J. Walsh, C. " ", , , 2010.