Www.mathVN.com Ki Thuat Giai Nhanh Chuong Vat Ly Hat Nhan NTLong

  • Published on
    03-Jul-2015

  • View
    1.596

  • Download
    0

Embed Size (px)

Transcript

<p>Gio vin: Nguyn Thnh LongEmail: Loinguyen1310@gmail.com D: 01694 013 498 1 K THUT GII NHANH CHNG VT L HT NHN Ch :Cng thc hm s m 1nnaa= , mn mna a = ,( ) . ;nnn n nna aab a bb b| |= = |\ ., ( )nm mna a = ,ln lnna n a =MT S DNG C BN Dng 1: Xc nh cc i lng c trng cho s phng x Loi 1: Xc nh s nguyn t (khi lng) cn li ca cht phng x sau thi gian phng x t Phng php: - S nguyn cn li sau thi gian phng x t l0. 00.022ttTtTtNNNN NeN N e</p> <p>=</p> <p>= = </p> <p>=</p> <p> - Khi lng cn li sau thi gian phng x t l0. 00.022ttTtTtmmmm m em m e</p> <p>=</p> <p>= = </p> <p>=</p> <p> Vi = T2 ln = T693 , 0 (hng s phng x) - S nguyn t c trong m (g) lng cht l AmNNA=Vi6, 023.1023AN=ht /moll s Avgar Loi 2: Xc nh s nguyn t (khi lng) b phng x ca cht phng x sau thi gian phng x t - Khi lng b phng x sau thi gian phng x t: ( )0 0 011 12ttTm m m m e m | | |A = = = |\ . - S nguyn t b phng x sau thi gian phng x t: ( )0 0 011 12ttTN N N N e N | | |A = = = |\ . Loi 3: Xc nh s nguyn t (khi lng) ht nhn mi to thnh sau thi gian phng x t - Mt ht nhn b phng x th sinh ra mt ht nhn mi, do vy s ht nhn mi to thnh sau thi gian phng x t bng s ht nhn b phng x trong thi gian ( )'0 0 011 12ttTN N N N N e N | | |A = A = = = |\ . www.MATHVN.comwww.mathvn.comGio vin: Nguyn Thnh LongEmail: Loinguyen1310@gmail.com D: 01694 013 498 2 - Khi lng ht nhn mi to thnh sau thi gian phng x l '' . 'ANm ANAA =Vi A l s khi ca ht nhn mi to thnh Ch : + Trong s phng x ht nhn m c s khi bng s khi ca ht nhn con (A = A). Do vy khi lng ht nhn mi to thnh bng khi lng ht nhn b phng x + Trong s phng xth( )' 4 ' 4NA A m ANA= A =Loi 4: Trong phng x , xc nh th tch (khi lng) kh Heli to thnh sau thi gian t phng x. - Mt ht nhn b phng x th sinh ra mt ht , do vy s ht to thnh sau thi gian phng x t bng s ht nhn b phng x trong thi gian . ( )'0 0 011 12tHetTN N N N N e N | | |A = A = = = |\ . - Khi lng kh Heli to thnh sau thi gian t phng x l4.HeHeANmNA=- Th tch kh Heli c to thnh (ktc) sau thi gian t phng x l. 22, 4.HeANVNA= (l) Loi 5: Xc nh phng x ca mt cht phng x 002ttTHH N He = = =vi 0 0 0ln 2H N NT = =n v ca phng x Bp vi 1 phn r /1s = 1Bq (1Ci = 3,7.1010Bq) Ch :Khi tnh 0Htheo cng thc0 0 0ln 2H N NT = =th phi i T ra n v giy (s) Loi 6: Bi ton lin quan ti phn trm + Phn trm s nguyn t (khi lng) cht phng x b phng x sau thi gian t phn r l( )01% .100% 1 .100% 1 100%2ttTNN eN | |A |A = = = |\ . ( )01% .100% 1 .100% 1 100%2ttTmm em | |A |A = = = |\ . + Phn trm s nguyn t (khi lng) cn li ca cht phng x sau thi gian t .0100%% .100% .100%2ttTNN eN = = =.0100%% .100% .100%2ttTmm em = = =www.MATHVN.comwww.mathvn.comGio vin: Nguyn Thnh LongEmail: Loinguyen1310@gmail.com D: 01694 013 498 3 + Phn trm phng x cn li sau thi gian t0% .100% 100%tHH eH = =Loi 7: Bi ton lin quan ti t s - T s ca s nguyn t (khi lng) cn li ca cht phng x sau thi gian phng x t .012ttTNeN = = ; .012ttTmem = =- T s ca s nguyn t (khi lng) b phng x ca cht phng x sau thi gian phng x t ( )011 12ttTNeN | |A |= = |\ .; ( )011 12ttTmem | |A |= = |\ . Loi 8: Bi ton lin quan n s ht cn li, b phng x (khi lng cn li, b phng x) hai thi im khc nhauCh :+ Khi tnT =vi n l mt s t nhin th p dng cc cng thc0.2tTN N=;0.2tTm m=+ Khi Tt l s thp phn th p dng cc cng thc: .0.tN Ne = ; .0.tm me =+ Khit T =T( ) 0, 5 2 2 2 2X X ZX Z ZX Z ZE E EA AA A AA A A= = &gt; =T (1) v (2) theo tnh cht bc cu Y X Z &gt; &gt;Cu 4: (H 2009) Gi s hai ht nhn X v Y c ht khi bng nhau v s nucln ca ht nhn X ln hn s nucln ca ht nhn Y th A. ht nhn Y bn vng hn ht nhn X. B. ht nhn X bn vng hn ht nhn Y. C. nng lng lin kt ring ca hai ht nhn bng nhau. D. nng lng lin kt ca ht nhn X ln hn nng lng lin kt ca ht nhn Y. Gii: Nhn xt: - ht khi bng nhau nn nng lng lin kt cng bng nhau- Ht nhn c to bi hai loi ht l Proton v Notron, hai loi ny c tn chung l Nuclon Nng lng lin kt ring 2.lkW mcA AA= = cng ln th ht nhn cng bn vng. V ht khi bng nhau nnt l nghch vi A, theo gii thit X Y X YA A &gt; th phn ng ta nng lng Nu0 E A 1 th phn ng phn hch dy chuyn t duy tr v c th gy nn bng n. C. Nu k &gt; 1 th phn ng phn hch dy chuyn khng xy ra. D. Nu k = 1 th phn ng phn hch dy chuyn khng xy ra. Cu 15: (C 2010) Phng x v phn hch ht nhn A. u c s hp th ntron chm.B. u l phn ng ht nhn thu nng lng. C. u khng phi l phn ng ht nhn.D. u l phn ng ht nhn ta nng lng. Cu 16: (C 2010) Khi ni v tia o, pht biu no sau y l sai? A. Tia o phng ra t ht nhn vi tc bng 2000 m/s. B. Khi i qua in trng gia hai bn t in, tia o b lch v pha bn m ca t in. C. Khi i trong khng kh, tia o lm ion ha khng kh v mt dn nng lng. D. Tia o l dng cc ht nhn heli (42He ). Cu 17: (C 2010) So vi ht nhn 2914Si , ht nhn 4020Cac nhiu hn A. 11 ntrn v 6 prtn.B. 5 ntrn v 6 prtn. C. 6 ntrn v 5 prtn.D. 5 ntrn v 12 prtn. Cu 18: (C 2010) Phn ng nhit hch l A. s kt hp hai ht nhn c s khi trung bnh to thnh ht nhn nng hn. B. phn ng ht nhn thu nng lng . C. phn ng trong mt ht nhn nng v thnh hai mnh nh hn. D. phn ng ht nhn ta nng lng www.MATHVN.comwww.mathvn.com</p>