Bai tap tich phan

  • Published on
    24-Jun-2015

  • View
    83

  • Download
    0

Embed Size (px)

DESCRIPTION

Bai tap tich phan

Transcript

  • 1. Chuyn tch phn n thi TN THPT v C, H Hc 24H===========================================================================1. A =BI TP TCH PHN5x 13 dxx 5x 61-0 2- + 2. A =1 2x0 (2x +1)e dx3. A =10 2dxx + 3x + 2 p + +4. A= 20cosx sinx cosx dx2 sinx25. A= sin20e x .sin2xdxp6. A=1 3 2 30 x (1- x ) dxp7. A= 2 sinx0 e cosxdxp8. A= 2 30 sin x cosxdx9. A=1 x20e- xdx 10. A=4 x1e dx xp +11. A = ( )2 2 20 1 sin x sin2xdx12. A =4dx1x(1+ x) 13. A =ln8 2xln3 xe dxe +114. A =7dx0x + 2 +1 15. A= 3 5 20 x x +1 dx16. A=7 30 3 2x dx1+ x17. A=3 3 50 3x dxx +123 318. A= 3dxx 1+ x==========================================================================Trang 1

2. Chuyn tch phn n thi TN THPT v C, H Hc 24H===========================================================================19. A=dxx x + 947 220. A=4xdx02x +1 p2e x xdx21. B= +01 2sin .cos122. C = dxxx +0 1823. D = +3 1dxxxln 2dx24. E = + -0ex e x25. F = 26cossin3ppxdxx26. A = 10ex sin exdx27.1I = (x 2+1).exdx028.2I = x x 2+ 3dx129.p= I x.sin xdx030.p= +I (e cosx 1).sin xdx031.10I = xe-xdx32.10I = (x +1)exdxe33. A = x ln x .dx1 234. = +0(2 1).cos .pI x x dx35. A=32235 2 3dx - x + x +36. A =3x dxx 2x2+2 35 3 8 + -2 - +x x4 7 dxx37. A = +1211 2+ +x x4 7 dx38. A = + +02x x3 21 2+ -2 3 1 dxx x39. A = - -022x x1x40. A = -043dxx==========================================================================Trang 2 3. Chuyn tch phn n thi TN THPT v C, H Hc 24H===========================================================================1 41. A = - + +dxx x x +4 2 7x03 2142. A = p0cos3x.cos 2x.dx43. A = p0sin x.sin 3x.dxp44. A = 60x x dxsin 2 .cos .p45. A = 20sin4 .cos3 .x x dxp3 2 = 46. I sin x.cos x.dx0p47. = A sin5 x.dx0248. = 0sin3 .pA x dxp49. =A sin4 x.dx050.44= 61 .sinA dxxppp51. = A cos3 x.dx0p52. = A cos5 x.dxp2p53. = A cos4 x.dx0454. = 014 .cospdxxA55.p= +2A sin x dx202 .xcos 356.2A sin x dx202 .3 sinxp= -257. = +02 sin .sin 2 . 2pA e x x dx58. ln5 ( )A dxln 2x xe e31xe+= -59.21 ..lnA dx4eex x= ln5( ) 60. +x xA = e +e x0224 dxeeA x x61. = +dxx12ln . 2 ln .162. = -I x5. 1 x2 .dx0163. = -I (1 x5 )8 x9dx0==========================================================================Trang 3 4. Chuyn tch phn n thi TN THPT v C, H Hc 24H===========================================================================164. I = (x6 -1)4 x5dx0A x65. = + -21.1 1dxxln3 -A ex66. = -+ln 2.2 1dxexA ex67. = +ln5ln 22dx.1ex1 dxe68. = +ln 4ln3.3A x1 dxe69. = +ln 4ln3.5A xln 4A = +e xx70. +ln322.1(1 ) dxe1 dxe71. = +ln3ln 22 .3A xp72. = A x sin x.dxp2273. = 0cos6 .pA x x dx174. =A x.e2x .dx0e75. =A x dx1ln .e76. =A x x dx1ln .277. = 2 ln 2 .eA x x dxee78. = -A x x dx13 ln .e79.. = A x x dx1ln2 .280. = 02 cos .pA x x dx281. = 02 sin 2 .pA x x dx182. =A x.e2x .dx0283. = 0sin 2 cos 2 .pA e x x dx284. = 0cos2 sin 2 .pA e x x dx285. = 0sin sin 2 . 2pA e x x dx286. = 0cos sin 2 . 2pA e x x dx87.A x dx= -2sin .4cos x3ppsin dx88. = -p0.2 cosxA x==========================================================================Trang 4 5. Chuyn tch phn n thi TN THPT v C, H Hc 24H===========================================================================89. 2A = x+0.sin 2cos 2 3pdxx90. ln5 ( )A dxln3x xe e31xe+= -p91. =A ex cos x.dx0292. = 0sin .pA ex x dx193. = +A (x 1)e2 x .dx0eA x94. = dxx12 ln .A lnx95. = +edxx12 .( 1)96. = - -ln3ln 2.11 dxeA x97. 2 dxx- + +=41.5 4A-+xA e x98. = -102.1dxe99.4= A dx261 .x xsin . cotpp1100. = -A (2x x. 1)6 xdx0101.31lnA dx4eex x= 2B x dx102. = 6cos .33;sinpp x2A = x +dx( 1).x x x103. +12 ;ln4104. = 0tgx dx2 ;cos.pxA27 2 5 . ; edxA x x105. = - -1xx -xe eA = e -e106. -+10dx; x xA dx107. = + -ln 30. ;ex e x3108. A = x -2.dx;-34109. = - +B x2 3x 2.dx-16110. = +01 4sin cos. ;pA x dx4 sin cosA = x -x111. ;sin cos0 +pdxx xp2112. = -B sin sin30x xdx==========================================================================Trang 5 6. Chuyn tch phn n thi TN THPT v C, H Hc 24H===========================================================================e113. A = 1 +ln x;1 dxxp3 .A x dx= 2114. ;p sinx4p2e x x dx115. = -B .cos3 .0ln 20 A = x e-x dx116. . . ;e117. =B ln3 .x dx11118. = +B x.ln(x2 1).dx0119. 21( 1) ln .eA = x - x + x dxp2x x xdx120. = B .sin .cos02121. = -02 )4cos(pI p x dxp2122. I = 0sin 2 2xdx1123. I = -0e 4x xdx 2124. I =40tan xdxp125. I = 40tan2pxdx126. I = 40tan3pxdx127. I = 40tan4pxdx128. I = 40tan5pxdx129. I =46cot xdxpp 2 -130. I = -x 1 +12dxx 2131. A =/ 2x0sin x.e .dxp1 +e (1 x)132. I = +0xxdx1 xep133. I = +/ 20(esin x cos x) cos x.dxln 2 -1 e134. I = +0xdxx1 e==========================================================================Trang 6 7. Chuyn tch phn n thi TN THPT v C, H Hc 24H===========================================================================p135. 2I = +0(esin x x) cos xdx4136. = - +I x2 4x 3 dx21137. I = x2 -4 dx-32138. = + -I x2 x 2 dx02139. = - +I 2x2 7x 5 dx01140. = + +I x2 x 5 dx01141. = - + -I 2x2 x 1dx02142. = +I x2 4dx01143. I = - 2x2 -5 dx-12144. = - +I x2 2x 1dx04145. = - + -I x2 6x 9 dx01146. = - +I x2 4x 4 dx01147. = + +I x2 8x 16 dx0B 1 dx148. = ( - +)12 211 x(x = tant)B 1 dx149. = ( +) 202 4 2x(x = 2tant)B 1 dx150. = +102 3x1B 1 dx151. = -2201 x(x = cost)1152. = -B 1 x2 dx0pB cos153. = +20 1 cosdxxxpB 1154. = +40 1 sin 2dxxp2e x x xdx .155. = B sin sin cos3 20==========================================================================Trang 7